Rule of Distribution/Disjunction Distributes over Conjunction/Left Distributive/Formulation 1/Forward Implication

From ProofWiki
Jump to navigation Jump to search

Theorem

$p \lor \paren {q \land r} \vdash \paren {p \lor q} \land \paren {p \lor r}$


Proof

By the tableau method of natural deduction:

$p \lor \paren {q \land r} \vdash \paren {p \lor q} \land \paren {p \lor r} $
Line Pool Formula Rule Depends upon Notes
1 1 $p \lor \paren {q \land r}$ Premise (None)
2 2 $p$ Assumption (None)
3 2 $p \lor q$ Rule of Addition: $\lor \II_1$ 2
4 2 $p \lor r$ Rule of Addition: $\lor \II_1$ 2
5 2 $\paren {p \lor q} \land \paren {p \lor r}$ Rule of Conjunction: $\land \II$ 3, 4
6 6 $q \land r$ Assumption (None)
7 6 $q$ Rule of Simplification: $\land \EE_1$ 6
8 6 $r$ Rule of Simplification: $\land \EE_2$ 6
9 6 $p \lor q$ Rule of Addition: $\lor \II_2$ 7
10 6 $p \lor r$ Rule of Addition: $\lor \II_2$ 8
11 6 $\paren {p \lor q} \land \paren {p \lor r}$ Rule of Conjunction: $\land \II$ 7, 8
12 1 $\paren {p \lor q} \land \paren {p \lor r}$ Proof by Cases: $\text{PBC}$ 1, 2 – 5, 6 – 11 Assumptions 2 and 6 have been discharged

$\blacksquare$