Rule of Distribution/Disjunction Distributes over Conjunction/Left Distributive/Formulation 1/Reverse Implication

From ProofWiki
Jump to navigation Jump to search

Definition

$\paren {p \lor q} \land \paren {p \lor r} \vdash p \lor \paren {q \land r}$


Proof

By the tableau method of natural deduction:

$\paren {p \lor q} \land \paren {p \lor r} \vdash p \lor \paren {q \land r} $
Line Pool Formula Rule Depends upon Notes
1 1 $\paren {p \lor q} \land \paren {p \lor r}$ Premise (None)
2 1 $p \lor r$ Rule of Simplification: $\land \EE_2$ 1
3 3 $p$ Assumption (None)
4 3 $p \lor \paren {q \land r}$ Rule of Addition: $\lor \II_1$ 3
5 5 $r$ Assumption (None)
6 1 $p \lor q$ Rule of Simplification: $\land \EE_1$ 1
7 7 $p$ Assumption (None)
8 7 $p \lor \paren {q \land r}$ Rule of Addition: $\lor \II_1$ 7
9 9 $q$ Assumption (None)
10 5, 9 $q \land r$ Rule of Conjunction: $\land \II$ 9, 5
11 5, 9 $p \lor \paren {q \land r}$ Rule of Addition: $\lor \II_2$ 10
12 1, 5 $p \lor \paren {q \land r}$ Proof by Cases: $\text{PBC}$ 6, 7 – 8, 9 – 11 Assumptions 7 and 9 have been discharged
13 1 $p \lor \paren {q \land r}$ Proof by Cases: $\text{PBC}$ 2, 3 – 4, 5 – 12 Assumptions 3 and 5 have been discharged

$\blacksquare$