Rule of Material Equivalence/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The biconditional operation can be interpreted as the conjunction of conditionals:

$p \iff q \dashv \vdash \paren {p \implies q} \land \paren {q \implies p}$


Proof 1

By the tableau method of natural deduction:

$p \iff q \vdash \paren {p \implies q} \land \paren {q \implies p} $
Line Pool Formula Rule Depends upon Notes
1 1 $p \iff q$ Premise (None)
2 1 $p \implies q$ Biconditional Elimination: $\iff \EE_1$ 1
3 1 $q \implies p$ Biconditional Elimination: $\iff \EE_2$ 1
4 1 $\paren {p \implies q} \land \paren {q \implies p}$ Rule of Conjunction: $\land \II$ 2, 3


By the tableau method of natural deduction:

$\paren {p \implies q} \land \paren {q \implies p} \vdash p \iff q$
Line Pool Formula Rule Depends upon Notes
1 1 $\paren {p \implies q} \land \paren {q \implies p}$ Premise (None)
2 1 $p \implies q$ Rule of Simplification: $\land \EE_1$ 1
3 1 $q \implies p$ Rule of Simplification: $\land \EE_2$ 1
4 1 $p \iff q$ Biconditional Introduction: $\iff \II$ 2, 3

$\blacksquare$


Proof by Truth Table

We apply the Method of Truth Tables.

As can be seen by inspection, the truth values under the main connectives match for all boolean interpretations.

$\begin{array}{|ccc|ccccccc|} \hline p & \iff & q & (p & \implies & q) & \land & (q & \implies & p) \\ \hline \F & \T & \F & \F & \T & \F & \T & \F & \T & \F \\ \F & \F & \T & \F & \T & \T & \F & \T & \F & \F \\ \T & \F & \F & \T & \F & \F & \F & \F & \T & \T \\ \T & \T & \T & \T & \T & \T & \T & \T & \T & \T \\ \hline \end{array}$

$\blacksquare$


Sources