Rule of Material Implication/Formulation 1/Proof
Jump to navigation
Jump to search
Theorem
- $p \implies q \dashv \vdash \neg p \lor q$
Proof
We apply the Method of Truth Tables.
As can be seen by inspection, the truth values under the main connectives match for all boolean interpretations.
$\begin{array}{|ccc||cccc|} \hline p & \implies & q & \neg & p & \lor & q \\ \hline F & T & F & T & F & T & F \\ F & T & T & T & F & T & T \\ T & F & F & F & T & F & F \\ T & T & T & F & T & T & T \\ \hline \end{array}$
$\blacksquare$
Sources
- 1959: A.H. Basson and D.J. O'Connor: Introduction to Symbolic Logic (3rd ed.) ... (previous) ... (next): $\S 2.3$: Basic Truth-Tables of the Propositional Calculus
- 1965: E.J. Lemmon: Beginning Logic ... (previous) ... (next): $\S 2.3$: Truth-Tables
- 1972: A.G. Howson: A Handbook of Terms used in Algebra and Analysis ... (previous) ... (next): $\S 1$: Some mathematical language: Connectives
- 1978: Alan G. Hamilton: Logic for Mathematicians ... (previous) ... (next): $\S 1.2$: Truth functions and truth tables: Example $1.4 \ \text{(a)}$
- 1978: Alan G. Hamilton: Logic for Mathematicians ... (previous) ... (next): $\S 1.2$: Truth functions and truth tables: Exercise $4$
- 2000: Michael R.A. Huth and Mark D. Ryan: Logic in Computer Science: Modelling and reasoning about systems ... (previous) ... (next): $\S 1.4.1$: The meaning of logical connectives: Exercise $1.8: \ 1$