Schröder Rule/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$, $B$ and $C$ be relations on a set $S$.


The following statements are equivalent:

$(1): \quad A \circ B \subseteq C$
$(2): \quad A^{-1} \circ \overline C \subseteq \overline B$
$(3): \quad \overline C \circ B^{-1} \subseteq \overline A$

where:

$\circ$ denotes relation composition
$A^{-1}$ denotes the inverse of $A$
$\overline A$ denotes the complement of $A$.


Proof

By the definition of relation composition and subset we have that statement $(1)$ may be written as:

$(1') \quad \forall x, y, z \in S: \paren {\tuple {y, z} \in A \land \tuple {x, y} \in B \implies \tuple {x, z} \in C}$



Using a different arrangement of variable names, statement $(2)$ can be written:

$(2') \quad \forall x, y, z \in S: \paren {\tuple {z, y} \in A^{-1} \land \tuple {x, z} \in \overline C \implies \tuple {x, y} \in \overline B}$

By the definition of the inverse and the complement of a relation we can rewrite this as:

$(2) \quad \forall x, y, z \in S: \paren {\tuple {y, z} \in A \land \tuple {x, z} \notin C \implies \tuple {x, y} \notin B}$

Similarly, statement $(3)$ can be written:

$(3') \quad \forall x, y, z \in S: \paren {\tuple {x, z} \in \overline C \land \tuple {y, x} \in B^{-1} \implies \tuple {y, z} \in \overline A}$

By the definition of the inverse and the complement of a relation we can rewrite this as:

$(3) \quad \forall x, y, z \in S: \paren {\tuple {x, z} \notin C \land \tuple {x, y} \in B \implies \tuple {y, z} \notin A}$

So in all we have:

$(1') \quad \forall x, y, z \in S: \paren {\tuple {y, z} \in A \land \tuple {x, y} \in B \implies \tuple {x, z} \in C}$
$(2) \quad \forall x, y, z \in S: \paren {\tuple {y, z} \in A \land \tuple {x, z} \notin C \implies \tuple {x, y} \notin B}$
$(3) \quad \forall x, y, z \in S: \paren {\tuple {x, z} \notin C \land \tuple {x, y} \in B \implies \tuple {y, z} \notin A}$