Schur's Inequality

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y, z \in \R_{\ge 0}$ be positive real numbers.

Let $t \in \R, t > 0$ be a (strictly) positive real number.


Then:

$x^t \paren {x - y} \paren {x - z} + y^t \paren {y - z} \paren {y - x} + z^t \paren {z - x} \paren {z - y} \ge 0$


The equality holds if and only if either:

$x = y = z$
Two of them are equal and the other is zero.


When $t$ is a positive even integer, the inequality holds for all real numbers $x, y, z$.


Proof

We note that the inequality, as stated, is symmetrical in $x, y$ and $z$.

Without loss of generality, we can assume that $x \ge y \ge z \ge 0$.


Consider the expression:

$\paren {x - y} \paren {x^t \paren {x - z} - y^t \paren {y - z}} + z^t \paren {x - z} \paren {y - z}$


We see that every term in the above is non-negative. So, directly:

$(1): \quad \paren {x - y} \paren {x^t \paren {x - z} - y^t \paren {y - z}} + z^t \paren {x - z} \paren {y - z} \ge 0$


If $x = y = z$, all of $x - y$, $x - z$ and $y - z$ are $0$.

Thus equality holds.

Inspection on a case-by-case basis provides evidence for the other conditions for equality.


To show these are the only cases, we suppose $x, y, z$ are not equal.

Then $x > y > z \ge 0$.

We thus have $x - z > y - z$.

Hence:

\(\ds \) \(\) \(\ds \paren {x - y} \paren {x^t \paren {x - z} - y^t \paren {y - z} } + z^t \paren {x - z} \paren {y - z}\)
\(\ds \) \(\ge\) \(\ds \paren {x - y} \paren {x^t \paren {x - z} - y^t \paren {y - z} }\) second term is non-negative
\(\ds \) \(>\) \(\ds \paren {x - y} \paren {x^t \paren {y - z} - y^t \paren {y - z} }\)
\(\ds \) \(=\) \(\ds \paren {x - y} \paren {y - z} \paren {x^t - y^t}\)
\(\ds \) \(>\) \(\ds 0\) $x > y > z$


Now we suppose two numbers are equal, but the other is neither the same number or $0$.

If $x = y > z > 0$:

\(\ds \) \(\) \(\ds \paren {x - y} \paren {x^t \paren {x - z} - y^t \paren {y - z} } + z^t \paren {x - z} \paren {y - z}\)
\(\ds \) \(=\) \(\ds z^t \paren {x - z} \paren {y - z}\) $x - y = 0$
\(\ds \) \(>\) \(\ds 0\) $z > 0$, $x - z = y - z > 0$

If $x > y = z \ge 0$:

\(\ds \) \(\) \(\ds \paren {x - y} \paren {x^t \paren {x - z} - y^t \paren {y - z} } + z^t \paren {x - z} \paren {y - z}\)
\(\ds \) \(=\) \(\ds \paren {x - y} \paren {x^t \paren {x - z} }\) $y - z = 0$
\(\ds \) \(>\) \(\ds 0\) $x > 0$, $x - y = x - z > 0$

This shows the equality conditions is if and only if.


$(1)$ can then be rearranged to Schur's inequality.

$\Box$


Now, let $t$ be a positive even integer.


Without loss of generality, we can assume that $x \ge y \ge z$.

By Pigeonhole Principle, at least $2$ of them have the same sign.


Suppose $x, y$ are positive.

Once again we consider the expression:

$\paren {x - y} \paren {x^t \paren {x - z} - y^t \paren {y - z}} + z^t \paren {x - z} \paren {y - z}$

The first term is still non-negative.


The second term is non-negative, since:

$z^t \ge 0 \quad$ Even Power is Non-Negative
$x \ge z$, $y \ge z$

Thus we can still conclude $(1)$, which can then be rearranged to Schur's inequality.


Suppose $y, z$ are negative.

Then $-z, -y$ are positive, and $-z \le -y \le -x$.


Substituting $x, y, z$ for $-z, -y, -x$ in the above, the result follows.

$\blacksquare$


Source of Name

This entry was named for Issai Schur.