Secant Exponential Formulation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z$ be a complex number.

Let $\sec z$ denote the secant function and $i$ denote the imaginary unit: $i^2 = -1$.

Then:

$\sec z = \dfrac 2 {e^{i z} + e^{-i z} }$


Proof

\(\ds \sec z\) \(=\) \(\ds \frac 1 {\cos z}\) Definition of Complex Secant Function
\(\ds \) \(=\) \(\ds 1 / \frac {e^{i z} + e^{-i z} } 2\) Sine Exponential Formulation and Cosine Exponential Formulation
\(\ds \) \(=\) \(\ds \frac 2 {e^{i z} + e^{-i z} }\) multiplying top and bottom by $2$

$\blacksquare$


Also see


Sources