Secant Exponential Formulation
Jump to navigation
Jump to search
Theorem
Let $z$ be a complex number.
Let $\sec z$ denote the secant function and $i$ denote the imaginary unit: $i^2 = -1$.
Then:
- $\sec z = \dfrac 2 {e^{i z} + e^{-i z} }$
Proof
\(\ds \sec z\) | \(=\) | \(\ds \frac 1 {\cos z}\) | Definition of Complex Secant Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 / \frac {e^{i z} + e^{-i z} } 2\) | Sine Exponential Formulation and Cosine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {e^{i z} + e^{-i z} }\) | multiplying top and bottom by $2$ |
$\blacksquare$
Also see
- Sine Exponential Formulation
- Cosine Exponential Formulation
- Tangent Exponential Formulation
- Cotangent Exponential Formulation
- Cosecant Exponential Formulation
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 7$: Relationship between Exponential and Trigonometric Functions: $7.21$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $4$