Second Hyperoperation is Multiplication Operation

From ProofWiki
Jump to navigation Jump to search

Theorem

The $2$nd hyperoperation is the multiplication operation restricted to the positive integers:

$\forall x, y \in \Z_{\ge 0}: H_2 \left({x, y}\right) = x \times y$


Proof

By definition of the hyperoperation sequence:

$\forall n, x, y \in \Z_{\ge 0}: H_n \left({x, y}\right) = \begin{cases}

y + 1 & : n = 0 \\ x & : n = 1, y = 0 \\ 0 & : n = 2, y = 0 \\ 1 & : n > 2, y = 0 \\ H_{n - 1} \left({x, H_n \left({x, y - 1}\right)}\right) & : n > 0, y > 0 \end{cases}$


Thus the $2$nd hyperoperation is defined as:

$\forall x, y \in \Z_{\ge 0}: H_2 \left({x, y}\right) = \begin{cases}

0 & : y = 0 \\ H_1 \left({x, H_2 \left({x, y - 1}\right)}\right) & : y > 0 \end{cases}$


From First Hyperoperation is Addition Operation:

$(1): \quad \forall x, y \in \Z_{\ge 0}: H_2 \left({x, y}\right) = \begin{cases}

0 & : y = 0 \\ x + H_2 \left({x, y - 1}\right) & : y > 0 \end{cases}$


The proof proceeds by induction.

For all $y \in \Z_{\ge 0}$, let $P \left({y}\right)$ be the proposition:

$\forall x \in \Z_{\ge 0}: H_2 \left({x, y}\right) = x \times y$


Basis for the Induction

$P \left({0}\right)$ is the case:

\(\ds H_2 \left({x, 0}\right)\) \(=\) \(\ds 0\) from $(1)$
\(\ds \) \(=\) \(\ds x \times 0\)


Thus $P \left({0}\right)$ is seen to hold.


This is the basis for the induction.


Induction Hypothesis

Now it needs to be shown that, if $P \left({k}\right)$ is true, where $k \ge 0$, then it logically follows that $P \left({k + 1}\right)$ is true.


So this is the induction hypothesis:

$\forall x \in \Z_{\ge 0}: H_2 \left({x, k}\right) = x \times k$


from which it is to be shown that:

$\forall x \in \Z_{\ge 0}: H_2 \left({x, k + 1}\right) = x \times \left({k + 1}\right)$


Induction Step

This is the induction step:


\(\ds H_2 \left({x, k + 1}\right)\) \(=\) \(\ds x + H_2 \left({x, \left({k + 1}\right) - 1}\right)\) from $(1)$
\(\ds \) \(=\) \(\ds x + H_2 \left({x, k}\right)\)
\(\ds \) \(=\) \(\ds x + \left({x \times k}\right)\) Induction Hypothesis
\(\ds \) \(=\) \(\ds x \times \left({k + 1}\right)\)

So $P \left({k}\right) \implies P \left({k + 1}\right)$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\forall x, y \in \Z_{\ge 0}: H_2 \left({x, y}\right) = x \times y$

$\blacksquare$