Second Order ODE/(x^2 + 2 y') y'' + 2 x y' = 0

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad \paren {x^2 + 2 y'} y + 2 x y' = 0$

subject to the initial conditions:

$y = 1$ and $y' = 0$ when $x = 0$

has the particular solution:

$y = 1$

or:

$3 y + x^3 = 3$


Proof

The proof proceeds by using Solution of Second Order Differential Equation with Missing Dependent Variable.

Substitute $p$ for $y'$ in $(1)$:

\(\ds \paren {x^2 + 2 p} \dfrac {\d p} {\d x} + 2 x p\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds 2 x p \rd x + \paren {x^2 + 2 p} \rd p\) \(=\) \(\ds 0\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds p \paren {x^2 + p}\) \(=\) \(\ds C_1\) Bernoulli's Equation: $2 x y \rd x + \paren {x^2 + 2 y} \rd y = 0$


Consider the initial condition:

$y' = p = 0$ when $x = 0$

Hence putting $p = x = 0$ in $(2)$ we get:

$0 \cdot 0^2 + 0^2 = C_1$
$C_1 = 0$

and so $(2)$ becomes:

\(\ds p x^2\) \(=\) \(\ds -p^2\)
\(\ds \leadsto \ \ \) \(\ds p \paren {x^2 - p}\) \(=\) \(\ds 0\)


There are two possibilities here:

\(\ds p\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \dfrac {\d y} {\d x}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds C_2\)


From our initial condition:

$y = 1$ when $x = 0$

gives us:

$C_2 = 1$

and so the solution is obtained:

$y = 1$

$\Box$


The other option is:

\(\ds p = \dfrac {\d y} {\d x}\) \(=\) \(\ds -x^2\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds -\int x^2 \rd x\)
\(\text {(3)}: \quad\) \(\ds \) \(=\) \(\ds -\frac {x^3} 3 + C_2\)

From our initial condition:

$y = 1$ when $x = 0$

Hence putting $x = 0$ and $y = 1$ in $(3)$ we get:

$1 = - \dfrac {0^3} 3 = C_2$

and so $C_2 = 1$.

Thus we have:

$y + \dfrac {x^3} 3 = 1$

or:

$3 y + x^3 = 3$


Hence the result.

$\blacksquare$


Sources