Second Order ODE/x y'' = y' + (y')^3

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad x y = y' + \paren {y'}^3$

has the general solution:

$x^2 + \paren {y - C_2}^2 = C_1^2$


Proof

The proof proceeds by using Solution of Second Order Differential Equation with Missing Dependent Variable.

Substitute $p$ for $y'$ in $(1)$:

\(\ds x \dfrac {\d p} {\d x}\) \(=\) \(\ds p + p^3\)
\(\ds \leadsto \ \ \) \(\ds p = \frac {\d y} {\d x}\) \(=\) \(\ds \frac x {\sqrt {C_1^2 - x^2} }\) First Order ODE: $x \rd y = \paren {y + y^3} \rd x$
\(\ds \leadsto \ \ \) \(\ds \int \rd y\) \(=\) \(\ds \int \frac x {\sqrt {C_1^2 - x^2} }\) Solution to Separable Differential Equation
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds -\sqrt {C_1^2 - x^2} + C_2\) Primitive of $\dfrac x {\sqrt{a^2 - x^2} }$
\(\ds \leadsto \ \ \) \(\ds x^2 + \paren {y - C_2}^2\) \(=\) \(\ds C_1^2\) rearranging

$\blacksquare$


Sources