Second Order ODE/y y'' = y^2 y' + (y')^2

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$(1): \quad y y = y^2 y' + \paren {y'}^2$

subject to the initial conditions:

$y = -\dfrac 1 2$ and $y' = 1$ when $x = 0$

has the particular solution:

$2 y - 3 = 8 y \, \map \exp {\dfrac {3 x} 2}$


Proof

Using Solution of Second Order Differential Equation with Missing Independent Variable, $(1)$ can be expressed as:

\(\ds y p \frac {\d p} {\d y}\) \(=\) \(\ds y^2 p + p^2\) where $p = \dfrac {\d y} {\d x}$
\(\ds \leadsto \ \ \) \(\ds \frac {\d p} {\d y} - \frac p y\) \(=\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds p = \dfrac {\d y} {\d x}\) \(=\) \(\ds y \paren {y + C_1}\) Linear First Order ODE: $y' - \dfrac y x = k x$
\(\ds \leadsto \ \ \) \(\ds \int \frac {\d y} {y \paren {y + C_1} }\) \(=\) \(\ds \int \rd x\) Solution to Separable Differential Equation
\(\ds \leadsto \ \ \) \(\ds \frac 1 {C_1} \map \ln {\frac y {y + C_1} }\) \(=\) \(\ds x + C_2\) Primitive of Reciprocal of $\dfrac x {\paren {a x + b} }$


Now to consider the initial conditions:

$y = -\dfrac 1 2$ and $y' = 1$ when $x = 0$

After algebra:

\(\ds \map \ln {\frac y {y + C_1} }\) \(=\) \(\ds C_1 x + C_2\) reassigning $C_2$
\(\ds \leadsto \ \ \) \(\ds \frac y {y + C_1}\) \(=\) \(\ds e^{C_1 x + C_2}\)
\(\ds \) \(=\) \(\ds e^{C_2} e^{C_1 x}\)


When $x = 0$ we have $y = -1/2$:

\(\ds \frac {-1/2} {-1/2 + C_1}\) \(=\) \(\ds \frac 1 {1 - 2 C_1}\)
\(\ds \) \(=\) \(\ds e^{C_2}\)
\(\ds \leadsto \ \ \) \(\ds \frac y {y + C_1}\) \(=\) \(\ds \frac {e^{C_1 x} } {1 - 2 C_1}\)
\(\ds \leadsto \ \ \) \(\ds y \paren {1 - 2 C_1}\) \(=\) \(\ds \paren {y + C_1} e^{C_1 x}\)


Differentiating to get $y'$:

$y' \paren {1 - 2 C_1} = \paren {y + C_1} C_1 e^{C_1 x} + e^{C_1 x} y'$


Putting $y' = 1$ when $x = 0$ we get:

\(\ds 1 - 2 C_1\) \(=\) \(\ds \paren {-\frac 1 2 + C_1} C_1 + 1\)
\(\ds \leadsto \ \ \) \(\ds C_1\) \(=\) \(\ds -\frac 3 2\)


So:

\(\ds y \paren {1 - 2 C_1}\) \(=\) \(\ds \paren {y + C_1} e^{C_1 x}\)
\(\ds \leadsto \ \ \) \(\ds y \paren {1 - 2 \frac {-3} 2}\) \(=\) \(\ds \paren {y - \frac 3 2} e^{\frac {-3 x} 2}\)
\(\ds \leadsto \ \ \) \(\ds 8 y\) \(=\) \(\ds \paren {2 y - 3} e^{\frac {-3 x} 2}\)
\(\ds \leadsto \ \ \) \(\ds 2 y - 3\) \(=\) \(\ds 8 y \, \map \exp {\dfrac {3 x} 2}\)

$\blacksquare$


Sources