Second Partial Derivative wrt r of ln (r^2 + s)

From ProofWiki
Jump to navigation Jump to search

Theorem

$\dfrac {\partial^2} {\partial r^2} \map \ln {r^2 + s} = \dfrac {2 \paren {s - r^2} } {\paren {r^2 + s}^2}$


Proof

\(\ds \dfrac {\partial^2} {\partial r^2} \map \ln {r^2 + s}\) \(=\) \(\ds \map {\dfrac \partial {\partial r} } {\dfrac \partial {\partial r} \map \ln {r^2 + s} }\) Definition of Second Partial Derivative
\(\ds \) \(=\) \(\ds \dfrac \partial {\partial r} \frac 1 {r^2 + s} 2 r\) Derivative of Natural Logarithm, Chain Rule for Derivatives, treating $s$ as a constant
\(\ds \) \(=\) \(\ds \frac {2 \paren {r^2 + s} - 2 r \paren {2 r} } {\paren {r^2 + s}^2}\) Quotient Rule for Derivatives, again treating $s$ as a constant
\(\ds \) \(=\) \(\ds \frac {2 \paren {s - r^2} } {\paren {r^2 + s}^2}\) simplifying

$\blacksquare$


Sources