Separation of Variables/General Result
Jump to navigation
Jump to search
Theorem
Suppose a first order ordinary differential equation can be expressible in this form:
- $\map {g_1} x \map {h_1} y + \map {g_2} x \map {h_2} y \dfrac {\d y} {\d x} = 0$
Then the equation is said to have separable variables, or be separable.
Its general solution is found by solving the integration:
- $\ds \int \frac {\map {g_1} x} {\map {g_2} x} \rd x + \int \frac {\map {h_2} y} {\map {h_1} y} \rd y = C$
Proof
\(\ds \map {g_1} x \map {h_1} y + \map {g_2} x \map {h_2} y \frac {\d y} {\d x}\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\map {g_1} x} {\map {g_2} x} + \frac {\map {h_2} y} {\map {h_1} y} \frac {\d y} {\d x}\) | \(=\) | \(\ds 0\) | dividing both sides by $\map {g_2} x \map {h_1} y$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \left({\frac {\map {g_1} x} {\map {g_2} x} + \frac {\map {h_2} y} {\map {h_1} y} \frac {\d y} {\d x} }\right) \rd x\) | \(=\) | \(\ds \int 0 \rd x\) | integrating both sides with respect to $x$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \left({\frac {\map {g_1} x} {\map {g_2} x} + \frac {\map {h_2} y} {\map {h_1} y} \frac {\d y} {\d x} }\right) \rd x\) | \(=\) | \(\ds C\) | Primitive of Constant | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\map {g_1} x} {\map {g_2} x} \rd x + \int \frac {\map {h_2} y} {\map {h_1} y} \frac {\d y} {\d x} \rd x\) | \(=\) | \(\ds C\) | Linear Combination of Primitives | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\map {g_1} x} {\map {g_2} x} \rd x + \int \frac {\map {h_2} y} {\map {h_1} y} \rd y\) | \(=\) | \(\ds C\) | Integration by Substitution |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 18$: Basic Differential Equations and Solutions: $18.1$: Separation of variables