# Sequence of Composite Mersenne Numbers

## Theorem

The sequence of Mersenne numbers which are composite begins:

$2047, 8 \, 388 \, 607, 536 \, 870 \, 911, 137 \, 438 \, 953 \, 471, 2 \, 199 \, 023 \, 255 \, 551,\ldots$

The sequence of corresponding indices $p$ such that $2^p - 1$ is composite begins:

$11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, \ldots$

The sequence of corresponding integers $n$ such that the $n$th prime number $p \left({n}\right)$ is such that $2^{p \left({n}\right)} - 1$ is composite begins:

$5, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, \ldots$

## Examples of Composite Mersenne Numbers

### Mersenne Number $M_{67}$

$M_{67}$ (that is, $2^{67} - 1$) is a composite number:

 $\ds 2^{67} - 1$ $=$ $\ds 147 \, 573 \, 952 \, 589 \, 676 \, 412 \, 927$ $\ds$ $=$ $\ds 193 \, 707 \, 721 \times 761 \, 838 \, 257 \, 287$ $\ds$ $=$ $\ds \left({2 \times 1 \, 445 \, 580 \times 67 + 1}\right) \times \left({2 \times 5 \, 685 \, 360 \, 129 \times 67 + 1}\right)$

### Mersenne Number $M_{157}$

$M_{157}$ (that is, $2^{157} - 1$) is a composite number:

 $\ds 2^{157} - 1$ $=$ $\ds 182 \, 687 \, 704 \, 666 \, 362 \, 864 \, 775 \, 460 \, 604 \, 089 \, 535 \, 377 \, 456 \, 991 \, 567 \, 871$ $\ds$ $=$ $\ds 852 \, 133 \, 201 \times 60 \, 726 \, 444 \, 167 \times 1 \, 654 \, 058 \, 017 \, 289 \times 2 \, 134 \, 387 \, 368 \, 610 \, 417$ $\ds$ $=$ $\ds \left({2 \times 2 \, 713 \, 800 \times 157 + 1}\right) \times \left({2 \times 193 \, 396 \, 319 \times 157 + 1}\right)$ $\ds$  $\, \ds \times \,$ $\ds \left({2 \times 5 \, 267 \, 700 \, 692 \times 157 + 1}\right) \times \left({2 \times 6 \, 797 \, 412 \, 001 \, 944 \times 157 + 1}\right)$

### Mersenne Number $M_{167}$

$M_{167}$ (that is, $2^{167} - 1$) is a composite number:

 $\ds 2^{167} - 1$ $=$ $\ds 187 \, 072 \, 209 \, 578 \, 355 \, 573 \, 530 \, 071 \, 658 \, 587 \, 684 \, 226 \, 515 \, 959 \, 365 \, 500 \, 927$ $\ds$ $=$ $\ds 2 \, 349 \, 023 \times 79 \, 638 \, 304 \, 766 \, 856 \, 507 \, 377 \, 778 \, 616 \, 296 \, 087 \, 448 \, 490 \, 695 \, 649$ $\ds$ $=$ $\ds \left({2 \times 7033 \times 167 + 1}\right) \times \left({2 \times 238 \, 438 \, 038 \, 224 \, 121 \, 279 \, 574 \, 187 \, 473 \, 940 \, 381 \, 582 \, 307 \, 472 \times 167 + 1}\right)$

### Mersenne Number $M_{193}$

$M_{193}$ (that is, $2^{193} - 1$) is a composite number:

 $\ds 2^{193} - 1$ $=$ $\ds 12 \, 554 \, 203 \, 470 \, 773 \, 361 \, 527 \, 671 \, 578 \, 846 \, 415 \, 332 \, 832 \, 204 \, 710 \, 888 \, 928 \, 069 \, 025 \, 791$ $\ds$ $=$ $\ds 13 \, 821 \, 503 \times 61 \, 654 \, 440 \, 233 \, 248 \, 340 \, 616 \, 559 \times 14 \, 732 \, 265 \, 321 \, 145 \, 317 \, 331 \, 353 \, 282 \, 383$ $\ds$ $=$ $\ds \left({2 \times 35 \, 807 \times 193 + 1}\right) \times \left({2 \times 159 \, 726 \, 529 \, 101 \, 679 \, 638 \, 903 \times 193 + 1}\right)$ $\ds$  $\, \ds \times \,$ $\ds \left({2 \times 38 \, 166 \, 490 \, 469 \, 288 \, 386 \, 868 \, 790 \, 887 \times 193 + 1}\right)$

### Mersenne Number $M_{199}$

$M_{199}$ (that is, $2^{199} - 1$) is a composite number:

 $\ds 2^{199} - 1$ $=$ $\ds 803 \, 469 \, 022 \, 129 \, 495 \, 137 \, 770 \, 981 \, 046 \, 170 \, 581 \, 301 \, 261 \, 101 \, 496 \, 891 \, 396 \, 417 \, 650 \, 687$ $\ds$ $=$ $\ds 164 \, 504 \, 919 \, 713 \times 4 \, 884 \, 164 \, 093 \, 883 \, 941 \, 177 \, 660 \, 049 \, 098 \, 586 \, 324 \, 302 \, 977 \, 543 \, 600 \, 799$ $\ds$ $=$ $\ds \paren {2 \times 413 \, 328 \, 944 \times 199 + 1} \times \paren {2 \times 12 \, 271 \, 769 \, 080 \, 110 \, 404 \, 968 \, 995 \, 098 \, 237 \, 654 \, 081 \, 163 \, 260 \, 159 \, 801 \times 199 + 1}$

### Mersenne Number $M_{227}$

$M_{227}$ (that is, $2^{227} - 1$) is a composite number:

 $\ds 2^{227} - 1$ $=$ $\ds 215 \, 679 \, 573 \, 337 \, 205 \, 118 \, 357 \, 336 \, 120 \, 696 \, 157 \, 045 \, 389 \, 097 \, 155 \, 380 \, 324 \, 579 \, 848 \, 828 \, 881 \, 993 \, 727$ $\ds$ $=$ $\ds 26 \, 986 \, 333 \, 437 \, 777 \, 017 \times 7 \, 992 \, 177 \, 738 \, 205 \, 979 \, 626 \, 491 \, 506 \, 950 \, 867 \, 720 \, 953 \, 545 \, 660 \, 121 \, 688 \, 631$ $\ds$ $=$ $\ds \left({2 \times 59 \, 441 \, 263 \, 078 \, 804 \times 227 + 1}\right) \times \left({2 \times 17 \, 603 \, 915 \, 722 \, 920 \, 659 \, 970 \, 245 \, 610 \, 023 \, 937 \, 711 \, 351 \, 422 \, 158 \, 858 \, 345 \times 227 + 1}\right)$

### Mersenne Number $M_{229}$

$M_{229}$ (that is, $2^{229} - 1$) is a composite number:

 $\ds 2^{229} - 1$ $=$ $\ds 862 \, 718 \, 293 \, 348 \, 820 \, 473 \, 429 \, 344 \, 482 \, 784 \, 628 \, 181 \, 556 \, 388 \, 621 \, 521 \, 298 \, 319 \, 395 \, 315 \, 527 \, 974 \, 911$ $\ds$ $=$ $\ds 1 \, 504 \, 073 \times 20 \, 492 \, 753 \times 59 \, 833 \, 457 \, 464 \, 970 \, 183 \times 467 \, 795 \, 120 \, 187 \, 583 \, 723 \, 534 \, 280 \, 000 \, 348 \, 743 \, 236 \, 593$ $\ds$ $=$ $\ds \paren {2 \times 3284 \times 229 + 1}$ $\ds$  $\, \ds \times \,$ $\ds \paren {2 \times 44744 \times 229 + 1}$ $\ds$  $\, \ds \times \,$ $\ds \paren {2 \times 130 \, 640 \, 736 \, 823 \, 079 \times 229 + 1}$ $\ds$  $\, \ds \times \,$ $\ds \paren {2 \times 1 \, 021 \, 386 \, 725 \, 300 \, 401 \, 143 \, 087 \, 947 \, 599 \, 014 \, 723 \, 224 \times 229 + 1}$

### Mersenne Number $M_{257}$

$M_{257}$ (that is, $2^{257} - 1$) is a composite number:

 $\ds 2^{257} - 1$ $=$ $\ds 231 \, 584 \, 178 \, 474 \, 632 \, 390 \, 847 \, 141 \, 970 \, 017 \, 375 \, 815 \, 706 \, 539 \, 969 \, 331 \, 281 \, 128 \, 078 \, 915 \, 168 \, 015 \, 826 \, 259 \, 279 \, 871$ $\ds$ $=$ $\ds 535 \, 006 \, 138 \, 814 \, 359 \times 1 \, 155 \, 685 \, 395 \, 246 \, 619 \, 182 \, 673 \, 033 \times 374 \, 550 \, 598 \, 501 \, 810 \, 936 \, 581 \, 776 \, 630 \, 096 \, 313 \, 181 \, 393$ $\ds$ $=$ $\ds \paren {2 \times 1 \, 040 \, 867 \, 974 \, 347 \times 257 + 1}$ $\ds$  $\, \ds \times \,$ $\ds \paren {2 \times 2 \, 248 \, 415 \, 165 \, 849 \, 453 \, 662 \, 788 \times 257 + 1}$ $\ds$  $\, \ds \times \,$ $\ds \paren {2 \times 728 \, 697 \, 662 \, 454 \, 885 \, 090 \, 626 \, 024 \, 572 \, 171 \, 815 \, 528 \times 257 + 1}$

## Proof

Established by inspecting the sequence of Mersenne numbers:

$3, 7, 31, 127, 2047, 8191, 131 \, 071, 524 \, 287, 8 \, 388 \, 607, 536 \, 870 \, 911, 2 \, 147 \, 483 \, 647, \ldots$

and removing from it the sequence of Mersenne primes:

$3, 7, 31, 127, 8191, 131 \, 071, 524 \, 287, 2 \, 147 \, 483 \, 647, \ldots$

$\blacksquare$