Set Complement/Examples/Positive Real Numbers in Complex Numbers

From ProofWiki
Jump to navigation Jump to search

Example of Set Complement

Let the universe $\Bbb U$ be defined to be the set of real numbers $\C$.

Let the set of (strictly) positive real numbers be denoted by $\R_{>0}$.

Then:

$\relcomp {} {\R_{>0} } = \set {x + i y: y \ne 0 \text { or } x \le 0}$


Proof

\(\displaystyle \relcomp {} {\R_{>0} }\) \(=\) \(\displaystyle \relcomp {} {\set {x \in \R: x > 0} }\)
\(\displaystyle \) \(=\) \(\displaystyle \set {z \in \C: z \notin \set {x \in \R: x > 0} }\)
\(\displaystyle \) \(=\) \(\displaystyle \set {x + i y \in C: \neg \paren {y = 0 \text { and } x > 0} }\)
\(\displaystyle \) \(=\) \(\displaystyle \set {x + i y \in C: y \ne 0 \text { or } x \le 0 }\)

$\blacksquare$


Sources