Set Difference of Doubleton and Singleton is Singleton

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y$ be distinct objects.


Then:

$\set{x, y} \setminus \set x = \set y$


Proof

\(\ds \set {x, y} \setminus \set x\) \(=\) \(\ds \set {z: z \in \set {x, y} \land z \notin \set x}\) Definition of Set Difference
\(\ds \) \(=\) \(\ds \set {z: \paren {z = x \lor z = y} \land z \notin \set x}\) Definition of Doubleton
\(\ds \) \(=\) \(\ds \set {z: \paren {z = x \lor z = y} \land z \ne x}\) Definition of Singleton
\(\ds \) \(=\) \(\ds \set {z: \paren {z = x \land z \ne x} \lor \paren {z = y \land z \ne x} }\) Conjunction Distributes over Disjunction
\(\ds \) \(=\) \(\ds \set {z: \bot \lor \paren {z = y \land z \ne x} }\) Definition of Contradiction
\(\ds \) \(=\) \(\ds \set {z: \paren {z = y \land z \ne x} }\) Disjunction with Contradiction
\(\ds \) \(=\) \(\ds \set {z : z = y}\) Rule of Simplification
\(\ds \) \(=\) \(\ds \set y\) Definition of Singleton

$\blacksquare$