Set Intersection/Examples/2 Arbitrarily Chosen Sets of Complex Numbers 2
Jump to navigation
Jump to search
Example of Set Intersection
Let:
\(\ds A\) | \(=\) | \(\ds \set {3, -i, 4, 2 + i, 5}\) | ||||||||||||
\(\ds C\) | \(=\) | \(\ds \set {-\sqrt 2 i, \dfrac 1 2, 3}\) |
Then:
- $A \cap C = \set 3$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Solved Problems: Point Sets: $46 \ \text {(c)}$