Set Intersection Preserves Subsets/Corollary
Jump to navigation
Jump to search
Theorem
Let $A, B, S$ be sets.
Then:
- $A \subseteq B \implies A \cap S \subseteq B \cap S$
Proof 1
Let $A \subseteq B$, and let $S$ be any set.
From Set Intersection Preserves Subsets:
- $A \subseteq B, \ S \subseteq T \implies A \cap S \subseteq B \cap T$
for arbitrary sets $S$ and $T$.
Substituting $S$ for $T$:
- $A \subseteq B, \ S \subseteq S \implies A \cap S \subseteq B \cap S$
From Set is Subset of Itself, $S \subseteq S$ for all sets $S$.
Hence the result:
- $A \subseteq B \implies A \cap S \subseteq B \cap S$
$\blacksquare$
Proof 2
Recall the Factor Principles, themselves a corollary of the Praeclarum Theorema:
- $\paren {p \implies q} \vdash \paren {p \land r} \implies \paren {q \land r}$
This is applied as:
\(\ds \) | \(\) | \(\ds A \subseteq B\) | ||||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \paren {x \in A \implies x \in B}\) | Definition of Subset | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \paren {x \in A \land x \in S \implies x \in B \land x \in S}\) | Factor Principles | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds \paren {x \in A \cap S \implies x \in B \cap S}\) | Definition of Set Intersection | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds A \cap S \subseteq B \cap S\) | Definition of Subset |
$\blacksquare$
Sources
- 1971: Robert H. Kasriel: Undergraduate Topology ... (previous) ... (next): $\S 1.6$: Set Identities and Other Set Relations: Exercise $1 \ \text{(a)}$