Set Theory/Examples
Examples in Set Theory
Unions and Intersections $1$
Let:
\(\ds V_1\) | \(=\) | \(\ds \set {v_1, v_3, v_4}\) | ||||||||||||
\(\ds V_2\) | \(=\) | \(\ds \set {v_2, v_5}\) | ||||||||||||
\(\ds V_3\) | \(=\) | \(\ds \set {v_1, v_3}\) |
Then:
\(\ds V_1 \cup V_2\) | \(=\) | \(\ds \set {v_1, v_2, v_3, v_4, v_5}\) | ||||||||||||
\(\ds V_1 \cup V_3\) | \(=\) | \(\ds \set {v_1, v_3, v_4}\) | ||||||||||||
\(\ds V_2 \cup V_3\) | \(=\) | \(\ds \set {v_1, v_2, v_3, v_5}\) | ||||||||||||
\(\ds V_1 \cap V_2\) | \(=\) | \(\ds \O\) | ||||||||||||
\(\ds V_1 \cap V_3\) | \(=\) | \(\ds \set {v_1, v_3}\) | ||||||||||||
\(\ds V_2 \cap V_3\) | \(=\) | \(\ds \O\) |
Thus:
Unions and Intersections $2$
Let:
\(\ds A\) | \(=\) | \(\ds \set {1, 2}\) | ||||||||||||
\(\ds B\) | \(=\) | \(\ds \set {1, \set 2}\) | ||||||||||||
\(\ds C\) | \(=\) | \(\ds \set {\set 1, \set 2}\) | ||||||||||||
\(\ds D\) | \(=\) | \(\ds \set {\set 1, \set 2, \set {1, 2} }\) |
Then:
\(\ds A \cap B\) | \(=\) | \(\ds \set 1\) | ||||||||||||
\(\ds \paren {B \cap D} \cup A\) | \(=\) | \(\ds \set {1, 2, \set 2}\) | ||||||||||||
\(\ds \paren {A \cap B} \cup D\) | \(=\) | \(\ds \set {1, \set 1, \set 2, \set {1, 2} }\) | ||||||||||||
\(\ds \paren {A \cap B} \cup \paren {C \cap D}\) | \(=\) | \(\ds \set {1, \set 1, \set 2}\) |
Equations $A \cup \paren {X \cap B} = C$, $\paren {A \cup X} \cap B = D$
Let $A, B, C, D$ be subsets of a set $S$.
Let there exist $X \subseteq S$ such that:
- $A \cup \paren {X \cap B} = C$
- $\paren {A \cup X} \cap B = D$
Then:
- $A \cap B \subseteq D \subseteq B$
and:
- $A \cup D = C$
$\blacksquare$
Simplify $\paren {A \cap B} \cup \paren {C \cap A} \cup \relcomp {\Bbb U} {\relcomp {\Bbb U} A \cup \relcomp {\Bbb U} B}$
The expression:
- $\paren {A \cap B} \cup \paren {C \cap A} \cup \relcomp {\Bbb U} {\relcomp {\Bbb U} A \cup \relcomp {\Bbb U} B}$
can be simplified to:
- $A \cap \paren {B \cup C}$
$\blacksquare$
Let $A$, $B$ and $C$ be sets defined by circles embedded in the complex plane as follows:
\(\ds A\) | \(=\) | \(\ds \set {z \in \C: \cmod {z + i} < 3}\) | ||||||||||||
\(\ds B\) | \(=\) | \(\ds \set {z \in \C: \cmod z < 5}\) | ||||||||||||
\(\ds C\) | \(=\) | \(\ds \set {z \in \C: \cmod {z + 1} < 4}\) |
Example of Intersection with Union
$C \cap \paren {A \cup B}$ can be illustrated graphically as:
where the intersection with the union is depicted in yellow.
Example of Intersection of Unions
$\paren {A \cup B} \cap \paren {B \cup C}$ can be illustrated graphically as:
where the intersection of the unions is depicted in yellow.
Example of Union of Intersections
$\paren {A \cap B} \cup \paren {B \cap C} \cup \paren {C \cap A}$ can be illustrated graphically as:
where the union of the intersections is depicted in yellow.
Example of Union of Intersections with Set Complements
$\paren {A \cap \tilde B} \cup \paren {B \cap \tilde C} \cup \paren {C \cap \tilde A}$, where $\tilde A$ denotes the complement of $A$, can be illustrated graphically as:
where the union of the intersections is depicted in yellow.