Set Theory/Examples/A cup (X cap B) = C, (A cup X) cap B = D
Jump to navigation
Jump to search
Example in Set Theory
Let $A, B, C, D$ be subsets of a set $S$.
Let there exist $X \subseteq S$ such that:
- $A \cup \paren {X \cap B} = C$
- $\paren {A \cup X} \cap B = D$
Then:
- $A \cap B \subseteq D \subseteq B$
and:
- $A \cup D = C$
Converse
Let the following conditions hold:
- $A \cap B \subseteq D \subseteq B$
and:
- $A \cup D = C$
Then these equations hold:
- $A \cup \paren {X \cap B} = C$
- $\paren {A \cup X} \cap B = D$
if:
- $X = D \setminus A$
Proof
\(\ds D\) | \(=\) | \(\ds \paren {A \cup X} \cap B\) | ||||||||||||
\(\text {(1)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds D\) | \(\subseteq\) | \(\ds B\) | Intersection is Subset | |||||||||
\(\ds D\) | \(=\) | \(\ds \paren {A \cup X} \cap B\) | ||||||||||||
\(\text {(2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds D\) | \(=\) | \(\ds \paren {A \cap B} \cup \paren {X \cap B}\) | Distributive Laws (Set Theory) | |||||||||
\(\text {(3)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds A \cap B\) | \(\subseteq\) | \(\ds D\) | Intersection is Subset | |||||||||
\(\ds \leadsto \ \ \) | \(\ds A \cap B\) | \(\subseteq\) | \(\ds D\) | from $(1)$ and $(3)$ | ||||||||||
\(\ds \) | \(\subseteq\) | \(\ds B\) |
Then:
\(\ds A \cup D\) | \(=\) | \(\ds A \cup \paren {A \cap B} \cup \paren {X \cap B}\) | from $(2)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds A \cup \paren {X \cap B}\) | Union Absorbs Intersection | |||||||||||
\(\ds \) | \(=\) | \(\ds C\) | by hypothesis |
$\blacksquare$
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): Chapter $1$: Sets and Logic: Exercise $12$