Set Union/Examples/3 Arbitrarily Chosen Sets of Complex Numbers
Jump to navigation
Jump to search
Example of Set Union
Let:
\(\ds A\) | \(=\) | \(\ds \set {1, i, -i}\) | ||||||||||||
\(\ds B\) | \(=\) | \(\ds \set {2, 1, -i}\) | ||||||||||||
\(\ds C\) | \(=\) | \(\ds \set {i, -1, 1 + i}\) |
Then:
- $\paren {A \cup B} \cup C = \set {2, 1, -i,1, 1 + i}$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: Point Sets: $121 \ \text{(a)}$