Set of Rational Cuts forms Ordered Field

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR$ denote the set of rational cuts.

Let $\struct {\RR, +, \times, \le}$ denote the ordered structure formed from $\RR$ and:

the operation $+$ of addition of cuts
the operation $\times$ of multiplication of cuts
the ordering $\le$ of cuts.


Then $\struct {\RR, + \times, \le}$ is an ordered field.


Proof

We demonstrate that $\struct {\RR, +, \times}$ is a field by showing it is a subfield of the structure $\struct {\CC, +, \times}$, where $\CC$ denotes the set of all cuts.

We do this by establishing that all $4$ criteria of the Subfield Test are satisfied.


We note that $0^* \in \RR$, where $0^*$ is the rational cut associated with the (rational) number $0$:

$0^* = \set {r \in \Q: r < 0}$

So $\RR \ne \O$.

Thus criterion $(1)$ is satisfied.

$\Box$




$\blacksquare$


Sources