# Sigma Function of Non-Square Semiprime/Examples/14

(Redirected from Sigma Function of 14)

## Example of Sigma Function of Non-Square Semiprime

$\sigma \left({14}\right) = 24$

where $\sigma$ denotes the $\sigma$ function.

## Proof 1

$\displaystyle \map \sigma n = \prod_{1 \mathop \le i \mathop \le r} \frac {p_i^{k_i + 1} - 1} {p_i - 1}$

where $n = \displaystyle \prod_{1 \mathop \le i \mathop \le r} p_i^{k_i}$ denotes the prime decomposition of $n$.

We have that:

$14 = 2 \times 7$

Hence:

 $\displaystyle \map \sigma {14}$ $=$ $\displaystyle \frac {2^2 - 1} {2 - 1} \times \frac {7^2 - 1} {7 - 1}$ $\displaystyle$ $=$ $\displaystyle \frac 3 1 \times \frac {48} 6$ $\displaystyle$ $=$ $\displaystyle 3 \times 8$ $\displaystyle$ $=$ $\displaystyle 24$

$\blacksquare$

## Proof 2

We have that:

$14 = 2 \times 7$

and so by definition is a semiprime whose prime factors are distinct.

Hence:

 $\displaystyle \sigma \left({14}\right)$ $=$ $\displaystyle \left({2 + 1}\right) \left({7 + 1}\right)$ Sigma Function of Non-Square Semiprime $\displaystyle$ $=$ $\displaystyle 3 \times 8$ $\displaystyle$ $=$ $\displaystyle 24$

$\blacksquare$