Sigma Function of Non-Square Semiprime/Examples

From ProofWiki
Jump to navigation Jump to search

Examples of $\sigma$ of Non-Square Semiprime

Let $\sigma: \Z_{>0} \to \Z_{>0}$ denote the $\sigma$ function: the sum of all the positive integer divisors of $n$.


$\sigma$ of $14$

$\sigma \left({14}\right) = 24$


$\sigma$ of $15$

$\sigma \left({15}\right) = 24$


$\sigma$ of $22$

$\sigma \left({22}\right) = 36$


$\sigma$ of $26$

$\sigma \left({26}\right) = 42$


$\sigma$ of $33$

$\sigma \left({33}\right) = 48$


$\sigma$ of $35$

$\sigma \left({35}\right) = 48$


$\sigma$ of $38$

$\sigma \left({38}\right) = 60$


$\sigma$ of $58$

$\sigma \left({58}\right) = 90$


$\sigma$ of $62$

$\sigma \left({62}\right) = 96$


$\sigma$ of $65$

$\sigma \left({65}\right) = 84$


$\sigma$ of $87$

$\sigma \left({87}\right) = 120$


$\sigma$ of $94$

$\sigma \left({94}\right) = 144$


$\sigma$ of $115$

$\sigma \left({115}\right) = 144$


$\sigma$ of $206$

$\sigma \left({206}\right) = 312$


$\sigma$ of $362$

$\sigma \left({362}\right) = 546$


$\sigma$ of $1257$

$\sigma \left({1257}\right) = 1680$