# Sigma Function of Non-Square Semiprime/Examples

## Examples of $\sigma$ of Non-Square Semiprime

Let $\sigma: \Z_{>0} \to \Z_{>0}$ denote the $\sigma$ function: the sum of all the positive integer divisors of $n$.

### $\sigma$ of $14$

$\sigma \left({14}\right) = 24$

### $\sigma$ of $15$

$\sigma \left({15}\right) = 24$

### $\sigma$ of $22$

$\map \sigma {22} = 36$

### $\sigma$ of $26$

$\sigma \left({26}\right) = 42$

### $\sigma$ of $33$

$\sigma \left({33}\right) = 48$

### $\sigma$ of $35$

$\sigma \left({35}\right) = 48$

### $\sigma$ of $38$

$\sigma \left({38}\right) = 60$

### $\sigma$ of $58$

$\sigma \left({58}\right) = 90$

### $\sigma$ of $62$

$\sigma \left({62}\right) = 96$

### $\sigma$ of $65$

$\sigma \left({65}\right) = 84$

### $\sigma$ of $87$

$\sigma \left({87}\right) = 120$

### $\sigma$ of $94$

$\map \sigma {94} = 144$

### $\sigma$ of $115$

$\map \sigma {115} = 144$

### $\sigma$ of $206$

$\map \sigma {206} = 312$

### $\sigma$ of $362$

$\sigma \left({362}\right) = 546$

### $\sigma$ of $1257$

$\sigma \left({1257}\right) = 1680$