Sigma Function of Non-Square Semiprime/Examples
Jump to navigation
Jump to search
Contents
- 1 Examples of $\sigma$ of Non-Square Semiprime
- 1.1 $\sigma$ of $14$
- 1.2 $\sigma$ of $15$
- 1.3 $\sigma$ of $22$
- 1.4 $\sigma$ of $26$
- 1.5 $\sigma$ of $33$
- 1.6 $\sigma$ of $35$
- 1.7 $\sigma$ of $38$
- 1.8 $\sigma$ of $58$
- 1.9 $\sigma$ of $62$
- 1.10 $\sigma$ of $65$
- 1.11 $\sigma$ of $87$
- 1.12 $\sigma$ of $94$
- 1.13 $\sigma$ of $115$
- 1.14 $\sigma$ of $206$
- 1.15 $\sigma$ of $362$
- 1.16 $\sigma$ of $1257$
Examples of $\sigma$ of Non-Square Semiprime
Let $\sigma: \Z_{>0} \to \Z_{>0}$ denote the $\sigma$ function: the sum of all the positive integer divisors of $n$.
$\sigma$ of $14$
- $\sigma \left({14}\right) = 24$
$\sigma$ of $15$
- $\sigma \left({15}\right) = 24$
$\sigma$ of $22$
- $\sigma \left({22}\right) = 36$
$\sigma$ of $26$
- $\sigma \left({26}\right) = 42$
$\sigma$ of $33$
- $\sigma \left({33}\right) = 48$
$\sigma$ of $35$
- $\sigma \left({35}\right) = 48$
$\sigma$ of $38$
- $\sigma \left({38}\right) = 60$
$\sigma$ of $58$
- $\sigma \left({58}\right) = 90$
$\sigma$ of $62$
- $\sigma \left({62}\right) = 96$
$\sigma$ of $65$
- $\sigma \left({65}\right) = 84$
$\sigma$ of $87$
- $\sigma \left({87}\right) = 120$
$\sigma$ of $94$
- $\sigma \left({94}\right) = 144$
$\sigma$ of $115$
- $\sigma \left({115}\right) = 144$
$\sigma$ of $206$
- $\sigma \left({206}\right) = 312$
$\sigma$ of $362$
- $\sigma \left({362}\right) = 546$
$\sigma$ of $1257$
- $\sigma \left({1257}\right) = 1680$