Sigma Function of Power of Prime
Jump to navigation
Jump to search
Theorem
Let $n = p^k$ be the power of a prime number $p$.
Let $\sigma \left({n}\right)$ be the sigma function of $n$.
That is, let $\sigma \left({n}\right)$ be the sum of all positive divisors of $n$.
Then:
- $\sigma \left({n}\right) = \dfrac {p^{k+1} - 1} {p - 1}$
Proof
From Divisors of Power of Prime, the divisors of $n = p^k$ are $1, p, p^2, \ldots, p^{k-1}, p^k$.
Hence from Sum of Geometric Progression:
- $\sigma \left({p^k}\right) = 1 + p + p^2 + \cdots + p^{k-1} + p^k = \dfrac {p^{k+1} - 1} {p - 1}$
$\blacksquare$
Examples
$\sigma$ of $81$
- $\sigma \left({81}\right) = 121$
Sources
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.2$: More about Numbers: Irrationals, Perfect Numbers and Mersenne Primes