Sigma Function of 284

From ProofWiki
(Redirected from Sigma of 284)
Jump to navigation Jump to search

Example of Sigma Function of Integer

$\map \sigma {284} = 504$

where $\sigma$ denotes the $\sigma$ function.


Proof

From Sigma Function of Integer

$\displaystyle \map \sigma n = \prod_{1 \mathop \le i \mathop \le r} \frac {p_i^{k_i + 1} - 1} {p_i - 1}$

where $n = \displaystyle \prod_{1 \mathop \le i \mathop \le r} p_i^{k_i}$ denotes the prime decomposition of $n$.


We have that:

$284 = 2^2 \times 71$


Hence:

\(\ds \map \sigma {284}\) \(=\) \(\ds \frac {2^3 - 1} {2 - 1} \times \paren {71 + 1}\)
\(\ds \) \(=\) \(\ds 7 \times 72\)
\(\ds \) \(=\) \(\ds 7 \times \paren {2^3 \times 3^2}\)
\(\ds \) \(=\) \(\ds 2^3 \times 3^2 \times 7\)
\(\ds \) \(=\) \(\ds 504\)

$\blacksquare$