Sign of Cotangent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be a real number.

Then:

\(\ds \cot x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$
\(\ds \cot x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$

where $\cot$ is the real cotangent function.


Proof

For the first part:

\(\ds \tan x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$ \(\quad\) Sign of Tangent
\(\ds \leadsto \ \ \) \(\ds \frac 1 \tan x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$ \(\quad\) Reciprocal of Strictly Positive Real Number is Strictly Positive
\(\ds \leadsto \ \ \) \(\ds \cot x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$ \(\quad\) Cotangent is Reciprocal of Tangent


For the second part:

\(\ds \tan x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$ \(\quad\) Sign of Tangent
\(\ds \leadsto \ \ \) \(\ds \frac 1 {\tan x}\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$ \(\quad\) Reciprocal of Strictly Negative Real Number is Strictly Negative
\(\ds \leadsto \ \ \) \(\ds \cot x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$ \(\quad\) Cotangent is Reciprocal of Tangent

$\blacksquare$


Also see