Sign of Secant

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be a real number.

\(\ds \sec x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \sec x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$

where $\sec$ is the real secant function.


Proof

For the first part:

\(\ds \cos x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$ \(\quad\) Sign of Cosine
\(\ds \leadsto \ \ \) \(\ds \frac 1 {\cos x}\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$ \(\quad\) Reciprocal of Strictly Positive Real Number is Strictly Positive
\(\ds \leadsto \ \ \) \(\ds \sec x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$ \(\quad\) Secant is Reciprocal of Cosine


For the second part:

\(\ds \cos x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$ \(\quad\) Sign of Cosine
\(\ds \leadsto \ \ \) \(\ds \frac 1 {\cos x}\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$ \(\quad\) Reciprocal of Strictly Negative Real Number is Strictly Negative
\(\ds \leadsto \ \ \) \(\ds \sec x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$ \(\quad\) Secant is Reciprocal of Cosine

$\blacksquare$


Also see