Sign of Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be a real number.

Then:

\(\ds \tan x\) \(>\) \(\ds 0\) if there exists an integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$
\(\ds \tan x\) \(<\) \(\ds 0\) if there exists an integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$

where $\tan$ denotes the tangent function.


Proof

From Tangent is Sine divided by Cosine:

$\tan x = \dfrac {\sin x} {\cos x}$

Since $n$ is an integer, $n$ is either odd or even.


Case 1

Let $n$ be odd.

Hence let $m$ be an integer such that $n = 2 m + 1$.


Case 1.1

$n \pi < x < \paren {n + \dfrac 1 2} \pi \implies \paren {2 m + 1} \pi < x < \paren {2 m + \dfrac 3 2} \pi$

From Sign of Sine, $\sin x$ is negative.

From Sign of Cosine, $\cos x$ is negative.

Therefore:

$\tan x = \dfrac {\sin x} {\cos x} > 0$


Case 1.2

$\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi \implies \paren {2 m + \dfrac 3 2} \pi < x < \paren {2 m + 2} \pi$

From Sign of Sine, $\sin x$ is negative.

From Sign of Cosine, $\cos x$ is positive.

Therefore:

$\tan x = \dfrac {\sin x} {\cos x} < 0$


Case 2

Let $n$ be even.

Hence let $m$ be an integer such that $n = 2 m$.


Case 2.1

$n \pi < x < \paren {n + \dfrac 1 2} \pi \implies 2 m \pi < x < \paren {2 m + \dfrac 1 2} \pi$

From Sign of Sine, $\sin x$ is positive.

From Sign of Cosine, $\cos x$ is positive.

Therefore:

$\tan x = \dfrac {\sin x} {\cos x} > 0$


Case 2.2

$\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi \implies \paren {2 m + \dfrac 1 2} \pi < x < \paren {2 m + 1} \pi$

From Sign of Sine, $\sin x$ is positive.

From Sign of Cosine, $\cos x$ is negative.

Therefore:

$\tan x = \dfrac {\sin x} {\cos x} < 0$


Therefore:

\(\ds \tan x\) \(>\) \(\ds 0\) if there exists integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$
\(\ds \tan x\) \(<\) \(\ds 0\) if there exists integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$

$\blacksquare$


Also see