Similar Matrices have same Traces

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf A = \sqbrk a_n$ and $\mathbf B = \sqbrk b_n$ be square matrices of order $n$.

Let $\mathbf A$ and $\mathbf B$ be similar.


Then:

$\map \tr {\mathbf A} = \map \tr {\mathbf B}$

where $\map \tr {\mathbf A}$ denotes the trace of $\mathbf A$.


Proof

By definition of similar matrices:

$\exists \mathbf P: \mathbf P^{-1} \mathbf A \mathbf P = \mathbf B$

where $\mathbf P$ is an invertible matrix of order $n$.

Therefore:

\(\ds \map \tr {\mathbf B}\) \(=\) \(\ds \map \tr {\mathbf P^{-1} \mathbf A \mathbf P}\)
\(\ds \) \(=\) \(\ds \map \tr {\mathbf P \paren {\mathbf P^{-1} \mathbf A} }\) Trace of Product of Matrices
\(\ds \) \(=\) \(\ds \map \tr {\paren {\mathbf P \mathbf P^{-1} } \mathbf A}\) Matrix Multiplication is Associative
\(\ds \) \(=\) \(\ds \map \tr {\mathbf I_n \mathbf A}\) Definition of Inverse Matrix
\(\ds \) \(=\) \(\ds \map \tr {\mathbf A}\) Unit Matrix is Identity for Matrix Multiplication

$\blacksquare$


Sources