Simpson's Formulas/Cosine by Sine
< Simpson's Formulas(Redirected from Simpson's Formula for Cosine by Sine)
Jump to navigation
Jump to search
Theorem
- $\cos \alpha \sin \beta = \dfrac {\map \sin {\alpha + \beta} - \map \sin {\alpha - \beta} } 2$
where $\cos$ denotes cosine and $\sin$ denotes sine.
Proof 1
\(\ds \) | \(\) | \(\ds \frac {\map \sin {\alpha + \beta} - \map \sin {\alpha - \beta} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {\sin \alpha \cos \beta + \cos \alpha \sin \beta} - \paren {\sin \alpha \cos \beta - \cos \alpha \sin \beta} } 2\) | Sine of Sum and Sine of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \cos \alpha \sin \beta} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cos \alpha \sin \beta\) |
$\blacksquare$
Proof 2
\(\ds \cos \alpha \sin \beta\) | \(=\) | \(\ds \sin \beta \cos \alpha\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \sin {\beta + \alpha} + \map \sin {\beta - \alpha} } 2\) | Simpson's Formula for Sine by Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \sin {\alpha + \beta} + \map \sin {-\paren {\alpha - \beta} } } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \sin {\alpha + \beta} - \map \sin {\alpha - \beta} } 2\) | Sine Function is Odd |
$\blacksquare$
Also reported as
This result can also sometimes be seen as:
- $2 \cos \alpha \sin \beta = \map \sin {\alpha + \beta} - \map \sin {\alpha - \beta}$
Examples
Example: $2 \cos 30 \degrees \sin 20 \degrees$
- $2 \cos 30 \degrees \sin 20 \degrees = \sin 50 \degrees - \sin 10 \degrees$
Example: $2 \cos 2 A \sin 4 A$
- $2 \cos 2 A \sin 4 A = \sin 6 A + \sin 2 A$
Also see
- Simpson's Formula for Sine by Sine
- Simpson's Formula for Cosine by Cosine
- Simpson's Formula for Sine by Cosine
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): product formulae
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): product formulae
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Product formulae