Simpson's Formulas/Cosine by Sine/Proof 2
Jump to navigation
Jump to search
Theorem
- $\cos \alpha \sin \beta = \dfrac {\map \sin {\alpha + \beta} - \map \sin {\alpha - \beta} } 2$
Proof
\(\ds \cos \alpha \sin \beta\) | \(=\) | \(\ds \sin \beta \cos \alpha\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \sin {\beta + \alpha} + \map \sin {\beta - \alpha} } 2\) | Simpson's Formula for Sine by Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \sin {\alpha + \beta} + \map \sin {-\paren {\alpha - \beta} } } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \sin {\alpha + \beta} - \map \sin {\alpha - \beta} } 2\) | Sine Function is Odd |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.5$. The Functions $e^z$, $\cos z$, $\sin z$