Simpson's Formulas/Hyperbolic Cosine by Hyperbolic Cosine

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cosh x \cosh y = \dfrac {\cosh \paren {x + y} + \cosh \paren {x - y} } 2$

where $\cosh$ denotes hyperbolic cosine.


Proof

\(\displaystyle \) \(\) \(\displaystyle \frac {\cosh \paren {x + y} + \cosh \paren {x - y} } 2\)
\(\displaystyle \) \(=\) \(\displaystyle \frac {\paren {\cosh x \cosh y + \sinh x \sinh y} + \cosh \paren {x - y} } 2\) Hyperbolic Cosine of Sum
\(\displaystyle \) \(=\) \(\displaystyle \frac {\paren {\cosh x \cosh y + \sinh x \sinh y} + \paren {\cosh x \cosh y - \sinh x \sinh y} } 2\) Hyperbolic Cosine of Difference
\(\displaystyle \) \(=\) \(\displaystyle \frac {2 \cosh x \cosh y} 2\)
\(\displaystyle \) \(=\) \(\displaystyle \cosh x \cosh y\)

$\blacksquare$


Also presented as

This result can also be seen presented as:

$2 \cosh x \cosh y = \cosh \paren {x + y} + \cosh \paren {x - y}$


Sources