Simpson's Formulas/Hyperbolic Sine by Hyperbolic Cosine

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sinh x \cosh y = \dfrac {\sinh \paren {x + y} + \sinh \paren {x - y} } 2$

where $\sinh$ denotes hyperbolic sine and $\cosh$ denotes hyperbolic cosine.


Proof

\(\displaystyle \) \(\) \(\displaystyle \frac {\sinh \paren {x + y} + \sinh \paren {x - y} } 2\)
\(\displaystyle \) \(=\) \(\displaystyle \frac {\paren {\sinh x \cosh y + \cosh x \sinh y} + \cosh \paren {x - y} } 2\) Hyperbolic Sine of Sum
\(\displaystyle \) \(=\) \(\displaystyle \frac {\paren {\sinh x \cosh y + \cosh x \sinh y} + \paren {\sinh x \cosh y - \cosh x \sinh y} } 2\) Hyperbolic Sine of Difference
\(\displaystyle \) \(=\) \(\displaystyle \frac {2 \sinh x \cosh y} 2\)
\(\displaystyle \) \(=\) \(\displaystyle \sinh x \cosh y\)

$\blacksquare$


Also presented as

This result can also be seen presented as:

$2 \sinh x \cosh y = \sinh \paren {x + y} + \sinh \paren {x - y}$


Sources