Simultaneous Homogeneous Linear First Order ODEs/Examples/y' - 3y + 2z = 0, y' + 4y - z = 0

From ProofWiki
Jump to navigation Jump to search

Theorem

Consider the system of linear first order ordinary differential equations with constant coefficients:

\(\text {(1)}: \quad\) \(\ds \dfrac {\d y} {\d x} - 3 y + 2 z\) \(=\) \(\ds 0\)
\(\text {(2)}: \quad\) \(\ds \dfrac {\d x} {\d z} + 4 y - z\) \(=\) \(\ds 0\)


The general solution to $(1)$ and $(2)$ consists of the linear combinations of the following:

\(\ds y\) \(=\) \(\ds C_1 e^{5 x} + C_2 e^{-x}\)
\(\ds z\) \(=\) \(\ds -C_1 e^{5 x} + 2 C_2 e^{-x}\)


Proof

Using the technique of Solution to Simultaneous Homogeneous Linear First Order ODEs with Constant Coefficients, we calculate the roots of the quadratic equation:

$\paren {k + a} \paren {k + d} - b c = 0$

where:

\(\ds a\) \(=\) \(\ds -3\)
\(\ds b\) \(=\) \(\ds 2\)
\(\ds c\) \(=\) \(\ds 4\)
\(\ds d\) \(=\) \(\ds -1\)

That is:

$\paren {k - 3} \paren {k - 1} - 8 = 0$

or:

$k^2 - 4 k - 5 = 0$


This has roots:

\(\ds k_1\) \(=\) \(\ds 5\)
\(\ds k_2\) \(=\) \(\ds -1\)


We also obtain:

\(\ds \paren {k - 3} A + 2 B\) \(=\) \(\ds 0\)
\(\ds 4 A + \paren {k - 1} B\) \(=\) \(\ds -1\)

When $k = 5$ we get that $A + B = 0$.

When $k = -1$ we get that $2 A - B = 0$.

This provides us with the solutions:

\(\ds y\) \(=\) \(\ds e^{5 x}\)
\(\ds z\) \(=\) \(\ds e^{-5 x}\)

or:

\(\ds y\) \(=\) \(\ds e^{-x}\)
\(\ds z\) \(=\) \(\ds 2 e^{-x}\)


From these, the general solution is constructed:

\(\ds y\) \(=\) \(\ds C_1 e^{5 x} + C_2 e^{-x}\)
\(\ds z\) \(=\) \(\ds -C_1 e^{5 x} + 2 C_2 e^{-x}\)

$\blacksquare$


Sources