Simultaneous Linear Equations/Examples/Arbitrary System 1

From ProofWiki
Jump to navigation Jump to search

Example of Simultaneous Linear Equations

The system of simultaneous linear equations:

\(\text {(1)}: \quad\) \(\ds x_1 - 2 x_2 + x_3\) \(=\) \(\ds 1\)
\(\text {(2)}: \quad\) \(\ds 2 x_1 - x_2 + x_3\) \(=\) \(\ds 2\)
\(\text {(3)}: \quad\) \(\ds 4 x_1 + x_2 - x_3\) \(=\) \(\ds 1\)

has as its solution set:

\(\ds x_1\) \(=\) \(\ds -\dfrac 1 2\)
\(\ds x_2\) \(=\) \(\ds \dfrac 1 2\)
\(\ds x_3\) \(=\) \(\ds \dfrac 3 2\)


Proof

Subtract $2 \times$ equation $(1)$ from equation $(2)$.

Subtract $4 \times$ equation $(1)$ from equation $(3)$.

This gives us:

\(\text {(1)}: \quad\) \(\ds x_1 - 2 x_2 + x_3\) \(=\) \(\ds 1\)
\(\text {(2')}: \quad\) \(\ds 3 x_2 - x_3\) \(=\) \(\ds 0\)
\(\text {(3')}: \quad\) \(\ds 9 x_2 - 5 x_3\) \(=\) \(\ds -3\)


Divide equation $(2')$ by $3$ to get $(2)$.

Add $2 \times$ equation $(2)$ to equation $(1)$.

Subtract $9 \times$ equation $(2)$ from equation $(3')$.

This gives us:

\(\text {(1')}: \quad\) \(\ds x_1 + \dfrac {x_3} 3\) \(=\) \(\ds 1\)
\(\text {(2)}: \quad\) \(\ds x_2 - \dfrac {x_3} 3\) \(=\) \(\ds 0\)
\(\text {(3)}: \quad\) \(\ds -2 x_3\) \(=\) \(\ds -3\)

From equation $(3)$ we have directly that $x_3 = \dfrac 3 2$.

Substituting for $x_3$ in equation $(1')$ and equation $(2)$ gives the single solution:

\(\ds x_1\) \(=\) \(\ds -\dfrac 1 2\)
\(\ds x_2\) \(=\) \(\ds \dfrac 1 2\)
\(\ds x_3\) \(=\) \(\ds \dfrac 3 2\)

$\blacksquare$


Sources