Sine Function is Odd
Jump to navigation
Jump to search
Theorem
For all $z \in \C$:
- $\map \sin {-z} = -\sin z$
That is, the sine function is odd.
Proof
Recall the definition of the sine function:
\(\ds \sin z\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {z^{2 n + 1} } {\paren {2 n + 1}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds z - \frac {z^3} {3!} + \frac {z^5} {5!} - \cdots\) |
From Sign of Odd Power, we have that:
- $\forall n \in \N: -\paren {z^{2 n + 1} } = \paren {-z}^{2 n + 1}$
The result follows directly.
$\blacksquare$
Also see
- Cosine Function is Even
- Tangent Function is Odd
- Cotangent Function is Odd
- Secant Function is Even
- Cosecant Function is Odd
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.5$. The Functions $e^z$, $\cos z$, $\sin z$: $\text{(ii)}$: $(4.15)$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: $5.28$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: Functions of Angles in All Quadrants in terms of those in Quadrant I
- 1976: K. Weltner and W.J. Weber: Mathematics for Engineers and Scientists ... (previous) ... (next): $1$. Functions: $1.5$ Trigonometric or Circular Functions: $1.5.2$ Sine Function
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 16.3 \ (1) \ \text{(iv)}$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $4$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): sine
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Symmetry