Sine Inequality/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\size {\sin x} \le \size x$

for all $x \in \R$.


Proof

For $x = 0$, the inequality is trivial, as $\sin 0 = 0$.

If $\size x \ge 1$, the inequality also clear as:

\(\ds \size {\sin x}\) \(\le\) \(\ds 1\) Real Sine Function is Bounded
\(\ds \) \(\le\) \(\ds \size x\)


Now, suppose $0 < \size x < 1$

Then on the one hand:

\(\ds \dfrac {\sin x} x\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n + 1}!}\) Definition of Real Sine Function
\(\ds \) \(=\) \(\ds 1 - \sum_{n \mathop = 1}^\infty \paren {-1}^{n-1} \frac {x^{2 n} } {\paren {2 n + 1}!}\)
\(\ds \) \(\ge\) \(\ds 1 - \sum_{k \mathop = 0}^\infty \frac {x^{4k+2} } {\paren {4k+3}!}\) as $x^2 \ge 0$
\(\ds \) \(\ge\) \(\ds 1 - \sum_{k \mathop = 0}^\infty \frac 1 {\paren {4k+3}!}\) as $x^2 \le 1$
\(\ds \) \(=\) \(\ds 1 - \frac 1 {3!} \paren {1 + \frac 1 {7 \cdot 6 \cdot 5 \cdot 4} + \frac 1 {11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4} + \cdots }\)
\(\ds \) \(\ge\) \(\ds 1 - \frac 1 {3!} \paren {1 + \frac 1 {4^4} + \frac 1 {4^8} + \frac 1 {4^{12} } + \cdots }\)
\(\ds \) \(=\) \(\ds 1 - \frac {4^4} {3! \paren {4^4 - 1} }\) Sum of Infinite Geometric Sequence
\(\ds \) \(\ge\) \(\ds 0\)


On the one hand:

\(\ds \dfrac {\sin x} x\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n + 1}!}\) Definition of Real Sine Function
\(\ds \) \(=\) \(\ds 1 - \dfrac {x^2} 6 + \sum_{n \mathop = 2}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n + 1}!}\)
\(\ds \) \(\le\) \(\ds 1 - \dfrac {x^2} 6 + \sum_{k \mathop = 1}^\infty \frac {x^{4k} } {\paren {4k+1}!}\) as $x^2 \ge 0$
\(\ds \) \(=\) \(\ds 1 - x^2 \paren {\frac 1 6 - \sum_{k \mathop = 1}^\infty \frac {x^{2 \paren {k-1} } } {\paren {4k+1}!} }\)
\(\ds \) \(\le\) \(\ds 1 - x^2 \paren {\dfrac 1 6 - \sum_{k \mathop = 1}^\infty \frac 1 {\paren {4 k + 1}!} }\) as $x^2 \le 1$

The last expression is $\le 1$, since:

\(\ds \sum_{k \mathop = 1}^\infty \frac 1 {\paren {4 k + 1}!}\) \(=\) \(\ds \frac 1 {5!} \sum_{k \mathop = 1}^\infty \frac {5 !} {\paren {4 k + 1}!}\)
\(\ds \) \(=\) \(\ds \frac 1 {5!} \paren {1 + \frac 1 {9 \cdot 8 \cdot 7 \cdot 6} + \frac 1 {13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6} + \cdots}\)
\(\ds \) \(\le\) \(\ds \frac 1 {5!} \paren {1 + \frac 1 {6^4} + \frac 1 {6^8} + \frac 1 {6^{12} } + \cdots}\)
\(\ds \) \(=\) \(\ds \frac 1 {5!} \frac {6^4} {6^4 - 1}\) Sum of Infinite Geometric Sequence
\(\ds \) \(=\) \(\ds \frac 1 6 \frac {6^4} {20 \paren {6^4 - 1} }\)
\(\ds \) \(<\) \(\ds \frac 1 6\)

$\blacksquare$