Sine of Angle plus Full Angle/Corollary
Jump to navigation
Jump to search
Theorem
Let $n \in \Z$ be an integer.
Then:
- $\map \sin {x + 2 n \pi} = \sin x$
Proof
From Sine of Angle plus Full Angle:
- $\map \sin {x + 2 \pi} = \sin x$
The result follows from the General Periodicity Property:
If:
- $\forall x \in X: \map f x = \map f {x + L}$
then:
- $\forall n \in \Z: \forall x \in X: \map f x = \map f {x + n L}$
$\blacksquare$
Sources
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Shifts and periodicity
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $14$: Trigonometric formulae: Shifts and periodicity