Sine of Angle plus Straight Angle
Jump to navigation
Jump to search
Theorem
- $\map \sin {x + \pi} = -\sin x$
Proof
\(\ds \map \sin {x + \pi}\) | \(=\) | \(\ds \sin x \cos \pi + \cos x \sin \pi\) | Sine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \sin x \cdot \paren {-1} + \cos x \cdot 0\) | Cosine of Straight Angle and Sine of Straight Angle | |||||||||||
\(\ds \) | \(=\) | \(\ds -\sin x\) |
$\blacksquare$
Also see
- Cosine of Angle plus Straight Angle
- Tangent of Angle plus Straight Angle
- Cotangent of Angle plus Straight Angle
- Secant of Angle plus Straight Angle
- Cosecant of Angle plus Straight Angle
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.5$. The Functions $e^z$, $\cos z$, $\sin z$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: Functions of Angles in All Quadrants in terms of those in Quadrant I
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Shifts and periodicity