Sine of Complex Number/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.

Then:

$\sin \paren {a + b i} = \sin a \cosh b + i \cos a \sinh b$

where:

$\sin$ denotes the sine function (real and complex)
$\cos$ denotes the real cosine function
$\sinh$ denotes the hyperbolic sine function
$\cosh$ denotes the hyperbolic cosine function.


Proof

\(\ds \sin \paren {a + b i}\) \(=\) \(\ds \sin a \cos \paren {b i} + \cos a \sin \paren {b i}\) Sine of Sum
\(\ds \) \(=\) \(\ds \sin a \cosh b + \cos a \sin \paren {b i}\) Hyperbolic Cosine in terms of Cosine
\(\ds \) \(=\) \(\ds \sin a \cosh b + i \cos a \sinh b\) Hyperbolic Sine in terms of Sine

$\blacksquare$


Also see


Sources