Sine of Sum/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \sin {a + b} = \sin a \cos b + \cos a \sin b$


Proof

\(\ds \sin a \cos b + \cos a \sin b\) \(=\) \(\ds \paren {\frac {e^{i a} - e^{-i a} }{2 i} } \cos b + \cos a \paren {\frac {e^{i b} - e^{-i b} }{2 i} }\) Euler's Sine Identity
\(\ds \) \(=\) \(\ds \paren {\frac {e^{i a} - e^{-i a} } {2 i} } \paren {\frac {e^{i b} + e^{-i b} } 2}
         + \paren {\frac {e^{i a} + e^{-i a} } 2} \paren {\frac {e^{i b} - e^{-i b} } {2 i} }\)
Euler's Cosine Identity
\(\ds \) \(=\) \(\ds \frac {e^{i a} e^{i b} + e^{i a} e^{-i b} - e^{-i a} e^{i b} - e^{-i a} e^{-i b} } {4 i}\) expanding
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \frac {e^{i a} e^{i b} - e^{i a} e^{-i b} + e^{-i a} e^{i b} - e^{-i a} e^{-i b} } {4 i}\)
\(\ds \) \(=\) \(\ds \frac {e^{i a} e^{i b} - e^{-i a} e^{-i b} } {2 i}\) simplifying
\(\ds \) \(=\) \(\ds \frac {e^{i \paren {a + b} } - e^{-i \paren {a + b} } } {2 i}\) Exponential of Sum
\(\ds \) \(=\) \(\ds \map \sin {a + b}\) Euler's Sine Identity

$\blacksquare$