Sine of Sum/Proof 5
Jump to navigation
Jump to search
Theorem
- $\map \sin {a + b} = \sin a \cos b + \cos a \sin b$
Proof
\(\text {(1)}: \quad\) | \(\ds 2 \sin a \cos b\) | \(=\) | \(\ds \sin \paren {a + b} + \sin \paren {a - b}\) | Simpson's Formula for Sine by Cosine: Proof 2 | ||||||||||
\(\text {(2)}: \quad\) | \(\ds 2 \cos a \sin b\) | \(=\) | \(\ds \sin \paren {a + b} - \sin \paren {a - b}\) | Simpson's Formula for Cosine by Sine: Proof 2 | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 2 \sin \paren {a + b}\) | \(=\) | \(\ds 2 \sin a \cos b + 2 \cos a \sin b\) | $(1) + (2)$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sin \paren {a + b}\) | \(=\) | \(\ds \sin a \cos b + \cos a \sin b\) |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.5$. The Functions $e^z$, $\cos z$, $\sin z$: $(4.18)$