Sine of i

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sin i = \paren {\dfrac e 2 - \dfrac 1 {2 e} } i$

where $\sin$ denotes the complex sine function and $i$ is the imaginary unit.


Proof 1

We have:

\(\text {(1)}: \quad\) \(\ds \cos i + i \sin i\) \(=\) \(\ds e^{i \times i}\) Euler's Formula
\(\ds \) \(=\) \(\ds e^{-1}\) Definition of Imaginary Unit
\(\ds \) \(=\) \(\ds \frac 1 e\)

Also:

\(\text {(2)}: \quad\) \(\ds \cos i - i \sin i\) \(=\) \(\ds \map \cos {-i} + i \map \sin {-i}\) Cosine Function is Even and Sine Function is Odd
\(\ds \) \(=\) \(\ds e^{i \times \paren {-i} }\) Euler's Formula
\(\ds \) \(=\) \(\ds e^1\) Definition of Imaginary Unit
\(\ds \) \(=\) \(\ds e\)


Then from $(1) - (2)$:

\(\ds 2 i \sin i\) \(=\) \(\ds \frac 1 e - e\)
\(\ds \leadsto \ \ \) \(\ds \sin i\) \(=\) \(\ds \frac 1 {2 i} \paren {\frac 1 e - e}\)
\(\ds \) \(=\) \(\ds \paren {\frac e 2 - \frac 1 {2 e} } i\)

$\blacksquare$


Proof 2

\(\ds \sin i\) \(=\) \(\ds i \sinh 1\) Hyperbolic Sine in terms of Sine
\(\ds \) \(=\) \(\ds i \frac {e^1 - e^{-1} } 2\) Definition of Hyperbolic Sine
\(\ds \) \(=\) \(\ds \paren {\frac e 2 - \frac 1 {2 e} } i\)

$\blacksquare$


Also see