Skewness of Binomial Distribution

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a discrete random variable with a Binomial distribution with parameter $n$ and $p$ for some $n \in \N$ and $0 \le p \le 1$.

Then the skewness $\gamma_1$ of $X$ is given by:

$\gamma_1 = \dfrac {1 - 2 p} {\sqrt {n p q} }$

where $q = 1 - p$.


Proof

From Skewness in terms of Non-Central Moments:

$\gamma_1 = \dfrac {\expect {X^3} - 3 \mu \sigma^2 - \mu^3} {\sigma^3}$

where $\mu$ is the mean of $X$, and $\sigma$ the standard deviation.

We have, by Expectation of Binomial Distribution:

$\mu = n p$

By Variance of Binomial Distribution, we also have:

$\var X = \sigma^2 = n p \paren {1 - p}$

so:

$\sigma = \sqrt {n p \paren {1 - p} }$


To calculate $\gamma_1$, we must calculate $\expect {X^3}$.

We find this using the moment generating function of $X$, $M_X$.

By Moment Generating Function of Binomial Distribution, this is given by:

$\map {M_X} t = \paren {1 - p + p e^t}^n$

From Moment in terms of Moment Generating Function:

$\expect {X^3} = \map {M_X} 0$


So:

\(\ds \map {M_X'} t\) \(=\) \(\ds n p e^t \paren {1 - p + p e^t}^{n - 1}\) Chain Rule for Derivatives, Derivative of Power
\(\ds \map {M_X} t\) \(=\) \(\ds n p e^t \paren {1 - p + p e^t}^{n - 1} + n \paren {n - 1} p^2 e^{2 t} \paren {1 - p + p e^t}^{n - 2}\) Product Rule for Derivatives, Chain Rule for Derivatives, Derivative of Power
\(\ds \map {M_X} t\) \(=\) \(\ds \map {M_X} t + 2 n \paren {n - 1} p^2 e^{2 t} \paren {1 - p + p e^t}^{n - 2} + n \paren {n - 1} \paren {n - 2} p^3 e^{3 t} \paren {1 - p + p e^t}^{n - 3}\) Product Rule for Derivatives, Chain Rule for Derivatives, Derivative of Power

Setting $t = 0$:

\(\ds \expect {X^3}\) \(=\) \(\ds \map {M_X} 0 + 2 n \paren {n - 1} p^2 \paren {1 - p + p}^{n - 2} + n \paren {n - 1} \paren {n - 2} p^3 \paren {1 - p + p}^{n - 3}\)
\(\ds \) \(=\) \(\ds n p \paren {1 - p + p}^{n - 1} + n \paren {n - 1} p^2 \paren {1 - p + p}^{n - 2} + 2 n \paren {n - 1} p^2 + n \paren {n - 1} \paren {n - 2} p^3\)
\(\ds \) \(=\) \(\ds n p + 3 n \paren {n - 1} p^2 + n \paren {n - 1} \paren {n - 2} p^3\)
\(\ds \) \(=\) \(\ds n p + 3 n^2 p^2 - 3 n p^2 + n^3 p^3 - 3 n^2 p^3 + 2 n p^3\)

Plugging this result back into our equation above:

\(\ds \gamma_1\) \(=\) \(\ds \frac {\expect {X^3} - 3 \mu \sigma^2 - \mu^3} {\sigma^3}\)
\(\ds \) \(=\) \(\ds \frac {n p + 3 n^2 p^2 - 3 n p^2 + n^3 p^3 - 3 n^2 p^3 + 2 n p^3 - 3 n^2 p^2 \paren {1 - p} - n^3 p^3} {\paren {n p \paren {1 - p} }^{3/2} }\)
\(\ds \) \(=\) \(\ds \frac {n p - 3 n p^2 + 2 n p^3} {\paren {n p \paren {1 - p} }^{3/2} }\)
\(\ds \) \(=\) \(\ds \frac {n p \paren {1 - p} \paren {1 - 2 p} } {\paren {n p \paren {1 - p} }^{3/2} }\)
\(\ds \) \(=\) \(\ds \frac {1 - 2 p} {\sqrt {n p \paren {1 - p} } }\)
\(\ds \) \(=\) \(\ds \frac {1 - 2 p} {\sqrt {n p q} }\) $q = 1 - p$

$\blacksquare$