Smallest Integer not Sum of Two Ulam Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

The smallest integer greater than $1$ which is not the sum of two Ulam numbers is $23$.


Proof

Recall the Ulam numbers:

The sequence of Ulam numbers begins as follows:

$1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, \ldots{}$


We have:

\(\ds 2\) \(=\) \(\ds 1 + 1\)
\(\ds 3\) \(=\) \(\ds 2 + 1\)
\(\ds 4\) \(=\) \(\ds 3 + 1\)
\(\ds \) \(=\) \(\ds 2 + 2\)
\(\ds 5\) \(=\) \(\ds 4 + 1\)
\(\ds \) \(=\) \(\ds 3 + 2\)
\(\ds 6\) \(=\) \(\ds 4 + 2\)
\(\ds \) \(=\) \(\ds 3 + 3\)
\(\ds 7\) \(=\) \(\ds 6 + 1\)
\(\ds \) \(=\) \(\ds 4 + 3\)
\(\ds 8\) \(=\) \(\ds 6 + 2\)
\(\ds \) \(=\) \(\ds 4 + 4\)
\(\ds 9\) \(=\) \(\ds 8 + 1\)
\(\ds \) \(=\) \(\ds 6 + 3\)
\(\ds 10\) \(=\) \(\ds 8 + 2\)
\(\ds \) \(=\) \(\ds 6 + 4\)
\(\ds 11\) \(=\) \(\ds 8 + 3\)
\(\ds 12\) \(=\) \(\ds 11 + 1\)
\(\ds \) \(=\) \(\ds 8 + 4\)
\(\ds \) \(=\) \(\ds 6 + 6\)
\(\ds 13\) \(=\) \(\ds 11 + 2\)
\(\ds 14\) \(=\) \(\ds 13 + 1\)
\(\ds \) \(=\) \(\ds 11 + 3\)
\(\ds \) \(=\) \(\ds 8 + 6\)
\(\ds 15\) \(=\) \(\ds 13 + 2\)
\(\ds \) \(=\) \(\ds 11 + 4\)
\(\ds 16\) \(=\) \(\ds 13 + 3\)
\(\ds \) \(=\) \(\ds 8 + 8\)
\(\ds 17\) \(=\) \(\ds 16 + 1\)
\(\ds \) \(=\) \(\ds 13 + 4\)
\(\ds \) \(=\) \(\ds 11 + 6\)
\(\ds 18\) \(=\) \(\ds 16 + 2\)
\(\ds 19\) \(=\) \(\ds 18 + 1\)
\(\ds \) \(=\) \(\ds 16 + 3\)
\(\ds \) \(=\) \(\ds 13 + 6\)
\(\ds \) \(=\) \(\ds 11 + 8\)
\(\ds 20\) \(=\) \(\ds 18 + 2\)
\(\ds \) \(=\) \(\ds 16 + 4\)
\(\ds 21\) \(=\) \(\ds 18 + 3\)
\(\ds \) \(=\) \(\ds 13 + 8\)
\(\ds 22\) \(=\) \(\ds 18 + 4\)
\(\ds \) \(=\) \(\ds 16 + 6\)
\(\ds \) \(=\) \(\ds 11 + 11\)


Now consider the the difference between $23$ and successive Ulam numbers:

\(\ds 23 - 18\) \(=\) \(\ds 5\) not a Ulam number
\(\ds 23 - 16\) \(=\) \(\ds 7\) not a Ulam number
\(\ds 23 - 13\) \(=\) \(\ds 10\) not a Ulam number
\(\ds 23 - 11\) \(=\) \(\ds 12\) not a Ulam number

and it is not necessary to go further back.


Hence the result.

$\blacksquare$


Sources