Smallest Positive Integer which is Sum of 2 Odd Primes in n Ways

From ProofWiki
Jump to navigation Jump to search

Theorem

The sequence of positive integers $n$ which are the smallest such that they are the sum of $2$ odd primes in $k$ different ways begins as follows:

$k$ $n$
$1$ $6$
$2$ $10$
$3$ $22$
$4$ $34$
$5$ $48$
$6$ $60$

This sequence is A001172 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).


Proof

\(\ds 6\) \(=\) \(\ds 3 + 3\) $1$ way


\(\ds 8\) \(=\) \(\ds 5 + 3\) $1$ way


\(\ds 10\) \(=\) \(\ds 7 + 3\) $2$ ways
\(\ds \) \(=\) \(\ds 5 + 5\)


\(\ds 12\) \(=\) \(\ds 7 + 5\) $1$ way


\(\ds 14\) \(=\) \(\ds 11 + 3\) $2$ ways
\(\ds \) \(=\) \(\ds 7 + 7\)


\(\ds 16\) \(=\) \(\ds 13 + 3\) $2$ ways
\(\ds \) \(=\) \(\ds 11 + 5\)


\(\ds 18\) \(=\) \(\ds 13 + 5\) $2$ ways
\(\ds \) \(=\) \(\ds 11 + 7\)


\(\ds 20\) \(=\) \(\ds 17 + 3\) $2$ ways
\(\ds \) \(=\) \(\ds 13 + 7\)


\(\ds 22\) \(=\) \(\ds 19 + 3\) $3$ ways
\(\ds \) \(=\) \(\ds 17 + 5\)
\(\ds \) \(=\) \(\ds 11 + 11\)


\(\ds 24\) \(=\) \(\ds 19 + 5\) $2$ ways
\(\ds \) \(=\) \(\ds 13 + 11\)


\(\ds 26\) \(=\) \(\ds 23 + 3\) $3$ ways
\(\ds \) \(=\) \(\ds 19 + 7\)
\(\ds \) \(=\) \(\ds 13 + 13\)


\(\ds 28\) \(=\) \(\ds 23 + 5\) $2$ ways
\(\ds \) \(=\) \(\ds 17 + 11\)


\(\ds 30\) \(=\) \(\ds 23 + 7\) $3$ ways
\(\ds \) \(=\) \(\ds 19 + 11\)
\(\ds \) \(=\) \(\ds 17 + 13\)


\(\ds 32\) \(=\) \(\ds 29 + 3\) $2$ ways
\(\ds \) \(=\) \(\ds 19 + 13\)


\(\ds 34\) \(=\) \(\ds 31 + 3\) $4$ ways
\(\ds \) \(=\) \(\ds 29 + 5\)
\(\ds \) \(=\) \(\ds 23 + 11\)
\(\ds \) \(=\) \(\ds 17 + 17\)


\(\ds 36\) \(=\) \(\ds 31 + 5\) $4$ ways
\(\ds \) \(=\) \(\ds 29 + 7\)
\(\ds \) \(=\) \(\ds 23 + 13\)
\(\ds \) \(=\) \(\ds 19 + 17\)


\(\ds 38\) \(=\) \(\ds 31 + 7\) $2$ ways
\(\ds \) \(=\) \(\ds 19 + 19\)


\(\ds 40\) \(=\) \(\ds 37 + 3\) $3$ ways
\(\ds \) \(=\) \(\ds 29 + 11\)
\(\ds \) \(=\) \(\ds 23 + 17\)


\(\ds 42\) \(=\) \(\ds 37 + 5\) $4$ ways
\(\ds \) \(=\) \(\ds 31 + 11\)
\(\ds \) \(=\) \(\ds 29 + 13\)
\(\ds \) \(=\) \(\ds 23 + 19\)


\(\ds 44\) \(=\) \(\ds 41 + 3\) $3$ ways
\(\ds \) \(=\) \(\ds 37 + 7\)
\(\ds \) \(=\) \(\ds 31 + 13\)


\(\ds 46\) \(=\) \(\ds 43 + 3\) $4$ ways
\(\ds \) \(=\) \(\ds 41 + 5\)
\(\ds \) \(=\) \(\ds 29 + 17\)
\(\ds \) \(=\) \(\ds 23 + 23\)


\(\ds 48\) \(=\) \(\ds 43 + 5\) $5$ ways
\(\ds \) \(=\) \(\ds 41 + 7\)
\(\ds \) \(=\) \(\ds 37 + 11\)
\(\ds \) \(=\) \(\ds 31 + 17\)
\(\ds \) \(=\) \(\ds 29 + 19\)


From Smallest Positive Integer which is Sum of 2 Odd Primes in 6 Ways, the smallest positive integer which is the sum of $2$ odd primes in $6$ different ways is $60$.

$\blacksquare$


Sources