Snake Lemma
Jump to navigation
Jump to search
![]() | This article needs to be linked to other articles. In particular: kernel and cokernel could be more specific links but the specific concepts might not be up on PW yet. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $A$ be a commutative ring with unity.
Let:
- $\begin{xy}\xymatrix@L+2mu@+1em{ & M_1 \ar[r]_*{\alpha_1} \ar[d]^*{\phi_1} & M_2 \ar[r]_*{\alpha_2} \ar[d]^*{\phi_2} & M_3 \ar[d]^*{\phi_3} \ar[r] & 0 \\ 0 \ar[r] & N_1 \ar[r]_*{\beta_1} & N_2 \ar[r]_*{\beta_2} & N_3 & }\end{xy}$
be a commutative diagram of $A$-modules.
Suppose that the rows are exact.
Then we have a commutative diagram:
- $\begin{xy}\xymatrix@L+2mu@+1em{ & \ker \phi_1 \ar[r]_*{\tilde\alpha_1} \ar[d]^*{\iota_1} & \ker \phi_2 \ar[r]_*{\tilde\alpha_2} \ar[d]^*{\iota_2} & \ker \phi_3 \ar[d]^*{\iota_3} & \\ & M_1 \ar[r]_*{\alpha_1} \ar[d]^*{\phi_1} & M_2 \ar[r]_*{\alpha_2} \ar[d]^*{\phi_2} & M_3 \ar[d]^*{\phi_3} \ar[r] & 0 \\ 0 \ar[r] & N_1 \ar[r]_*{\beta_1} \ar[d]^*{\pi_1} & N_2 \ar[r]_*{\beta_2} \ar[d]^*{\pi_2} & N_3 \ar[d]^*{\pi_3} \\ & \operatorname{coker} \phi_1 \ar[r]_*{\bar\beta_1} & \operatorname{coker} \phi_2 \ar[r]_*{\bar\beta_2} & \operatorname{coker} \phi_3 & }\end{xy}$
where, for $i = 1, 2, 3$ respectively $i = 1, 2$:
- $\ker \phi_i$ is the kernel of $\phi_i$
- $\operatorname{coker} \phi_i$ is the cokernel of $\phi_i$
- $\iota_i$ is the inclusion mapping
- $\pi_i$ is the quotient epimorphism
- $\tilde \alpha_i = \alpha_i {\restriction \ker \phi_i}$, the restriction of $\alpha_i$ to $\ker \phi_i$
- $\bar \beta_i$ is defined by:
- $\forall n_i + \Img {\phi_i} \in \operatorname {coker} \phi_i : \map {\bar \beta_i} {n_i + \Img {\phi_i} } = \map {\beta_i} {n_i} + \Img {\phi_{i + 1} }$
Moreover there exists a morphism $\delta : \ker \phi_3 \to \operatorname{coker} \phi_1$ such that we have an exact sequence:
- $\begin{xy}\xymatrix@L+2mu@+1em{ \ker \phi_1 \ar[r]_*{\tilde\alpha_1} & \ker \phi_2 \ar[r]_*{\tilde\alpha_2} & \ker\phi_3 \ar[r]_*{\delta} & \operatorname{coker}\phi_1 \ar[r]_*{\bar\beta_1} & \operatorname{coker}\phi_2 \ar[r]_*{\bar\beta_2} & \operatorname{coker}\phi_3 }\end{xy}$
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |