Solution of Linear Congruence/Examples/7 x = 6 mod 5

From ProofWiki
Jump to navigation Jump to search

Example of Solution of Linear Congruence

Let $7 x = 6 \pmod 5$.

Then:

$x = 3 + 5 u$

where $u \in \Z$.


Proof

\(\ds 7 x\) \(=\) \(\ds 6\) \(\ds \pmod 5\)
\(\ds \leadsto \ \ \) \(\ds 7 x - 6\) \(=\) \(\ds 5 k\) for some $k \in \Z$
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 7 x - 5 k\) \(=\) \(\ds 6\)


From Solution of Linear Diophantine Equation, the general solution to $(1)$ is:

$(2): \quad \forall t \in \Z: x = x_0 + 5 t, k = k_0 + 7 t$

where $x_0, k_0$ can be found as follows.


Using the Euclidean Algorithm:

\(\text {(3)}: \quad\) \(\ds 7\) \(=\) \(\ds -1 \times \paren {-5} + 2\)
\(\text {(4)}: \quad\) \(\ds -5\) \(=\) \(\ds 3 \times \paren {-2} + 1\)
\(\ds -2\) \(=\) \(\ds -2 \times 1\)

Thus we have that:

$\gcd \set {7, -5} = 1$

which is (trivially) a divisor of $6$.

So, from Solution of Linear Diophantine Equation, a solution exists.


Next we find a single solution to $7 x - 5 k = 6$.

Again with the Euclidean Algorithm:

\(\ds 1\) \(=\) \(\ds -5 - 3 \times \paren {-2}\) from $(4)$
\(\ds \) \(=\) \(\ds -5 + 3 \times 2\)
\(\ds \) \(=\) \(\ds -5 + 3 \times \paren {7 - \paren {-1 \times \paren {-5} } }\) from $(3)$
\(\ds \) \(=\) \(\ds -5 + 3 \times \paren {7 - 5}\)
\(\ds \) \(=\) \(\ds 3 \times 7 + 4 \times \paren {-5}\)
\(\ds \leadsto \ \ \) \(\ds 6\) \(=\) \(\ds 18 \times 7 + 24 \times \paren {-5}\)


and so:

\(\ds x_0\) \(=\) \(\ds 18\)
\(\ds k_0\) \(=\) \(\ds 24\)

is a solution.


Thus:

\(\ds x\) \(=\) \(\ds 18 + 5 t\) from $(2)$
\(\ds \) \(=\) \(\ds 3 + 5 \paren {t + 3}\)

Setting $u = t + 3$ gives the result.

$\blacksquare$


Sources