Solution of Linear Congruence/Examples/9 x = 8 mod 7

From ProofWiki
Jump to navigation Jump to search

Example of Solution of Linear Congruence

Let $9 x = 8 \pmod 7$.

Then:

$x = 4 + 7 t$

where $t \in \Z$.


Proof

We have that:

$8 \equiv 1 \pmod 7$

and so:

\(\ds 9 x\) \(=\) \(\ds 8\) \(\ds \pmod 7\)
\(\ds \leadstoandfrom \ \ \) \(\ds 9 x\) \(=\) \(\ds 1\) \(\ds \pmod 7\)

That should simplify the arithmetic.

Then:

\(\ds 9 x\) \(=\) \(\ds 1\) \(\ds \pmod 7\)
\(\ds \leadsto \ \ \) \(\ds 9 x - 1\) \(=\) \(\ds 7 k\) for some $k \in \Z$
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 9 x - 7 k\) \(=\) \(\ds 1\)


From Solution of Linear Diophantine Equation, the general solution to $(1)$ is:

$(2): \quad \forall t \in \Z: x = x_0 + 7 t, k = k_0 + 9 t$

where $x_0, k_0$ can be found as follows.


Using the Euclidean Algorithm:

\(\text {(3)}: \quad\) \(\ds 9\) \(=\) \(\ds -1 \times \paren {-7} + 2\)
\(\text {(4)}: \quad\) \(\ds -7\) \(=\) \(\ds 4 \times \paren {-2} + 1\)
\(\ds -2\) \(=\) \(\ds -2 \times 1\)

Thus we have that:

$\gcd \set {9, -7} = 1$

which is (trivially) a divisor of $1$.

So, from Solution of Linear Diophantine Equation, a solution exists.


Next we find a single solution to $9 x - 7 k = 1$.

Again with the Euclidean Algorithm:

\(\ds 1\) \(=\) \(\ds -7 - 4 \times \paren {-2}\) from $(4)$
\(\ds \) \(=\) \(\ds -7 + 4 \times 2\)
\(\ds \) \(=\) \(\ds -7 + 4 \times \paren {9 - \paren {-1 \times \paren {-7} } }\) from $(3)$
\(\ds \) \(=\) \(\ds -7 + 4 \times \paren {9 - 7}\)
\(\ds \) \(=\) \(\ds 4 \times 9 + 5 \times \paren {-7}\)


and so:

\(\ds x_0\) \(=\) \(\ds 4\)
\(\ds k_0\) \(=\) \(\ds 5\)

is a solution.


Thus from $(2)$:

$x = 4 + 7 t$

$\blacksquare$


Sources